Psoriasis is a T-cell-mediated chronic inflammatory skin disease believed to be of autoimmune nature that can be triggered or worsened by streptococcal throat infections. In addition to conventional chronic inflammatory changes, psoriasis is characterized by complex and striking alterations in epidermal growth and differentiation. Psoriasis is generally not observed in animals other than man, and this lack of a suitable animal model has greatly hindered research into the pathogenesis of psoriasis. Multiple transgenic, knockout, and reconstituted models of psoriasis have been developed over the past two decades. Despite their limitations, these models have demonstrated that keratinocyte hyperplasia, vascular hyperplasia, and cell-mediated immunity in the skin are closely interrelated. Xenograft models, in which involved and uninvolved psoriatic skin are transplanted onto immunodeficient mice, are the only models that come close to incorporating the complete genetic, immunologic, and phenotypic changes of the disease. They have shown conclusively that psoriasis is a T-cell-mediated disease, and have been used to elucidate novel pathogenic pathways. In this review, we describe various animal models, detail the immunologic and intracellular pathways that mediate these phenotypes and assess the utility of these models to better understand this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.jid.5700807 | DOI Listing |
J Med Chem
January 2025
Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Molecular Modeling and Protein Engineering Lab, Biology Division, Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh, 530003, India. Electronic address:
Human 5-lipoxygenase (LOX) is a non-heme, Fe-containing LOX which catalyses the conversion of arachidonic acid (AA) to leukotriene A (LTA). LTA is subsequently converted to cysteinyl-LTs and LTB that cause bronchoconstriction and act as chemotactic and chemokinetic agent on human leukocytes, respectively. Leukotrienes play significant roles in inflammation in asthma, cardiovascular diseases, allergic rhinitis, atopic dermatitis, inflammatory bowel disease, rheumatoid arthritis, psoriasis and many more.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Furong Laboratory, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. Electronic address:
Melanoma is a devastating form of skin cancer characterized by a high mutational burden, limited treatment success, and dismal prognosis. Although immunotherapy and targeted therapies have significantly revolutionized melanoma treatment, the majority of patients fail to achieve durable responses, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, an iron-dependent form of regulated cell death driven by the overwhelming accumulation of lipid peroxides, has emerged as a promising therapeutic approach in preclinical melanoma models.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
Lipids are intimately associated with skin condition. This review aims to discuss the function of linoleic acid (LA, 18:2, ω-6), an essential fatty acid, in skin health and hair growth. In skin, LA can be metabolized into ω-6 unsaturated fatty acid, oxidized derivatives and incorporated into complex lipid molecules, including ω-hydroxy-ceramides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!