Proton magnetic resonance spectroscopy ((1)HMRS) is an in vivo brain imaging method that can be used to investigate psychotropic drug mechanism of action. This study evaluated baseline (1)HMRS spectra of bipolar depressed patients and whether the level of cerebral metabolites changed after an open trial of lamotrigine, an anti-glutamatergic mood stabilizer. Twenty-three bipolar depressed and 12 control subjects underwent a MRS scan of the anterior cingulate/medial prefrontal cortex. The scan was performed on a GE whole-body 1.5 T MRI scanner using single-voxel PRESS (TE/TR=30/3000 ms, 3 x 3 x 3 cm(3) and post-processed offline with LCModel. Baseline CSF-corrected absolute concentrations of glutamate+glutamine ([Glx]), glutamate ([Glu]), and creatine+phosphocreatine ([Cr]) were significantly higher in bipolar depressed subjects vs healthy controls. The non-melancholic subtype had significantly higher baseline [Glx] and [Glu] levels than the melancholic subtype. Remission with lamotrigine was associated with significantly lower post-treatment glutamine ([Gln]) in comparison to non-remission. These data suggest that non-melancholic bipolar depression is characterized by increased glutamate coupled with increased energy expenditure. Lamotrigine appears to reduce glutamine levels associated with treatment remission. Further study is encouraged to determine if these MR spectroscopic markers can delineate drug mechanism of action and subsequent treatment response.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.npp.1301387DOI Listing

Publication Analysis

Top Keywords

bipolar depressed
12
anterior cingulate/medial
8
cingulate/medial prefrontal
8
bipolar depression
8
drug mechanism
8
mechanism action
8
bipolar
5
increased anterior
4
prefrontal cortical
4
cortical glutamate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!