Osmosensory transduction is a bidirectional process displayed by neurons involved in the control of thirst and antidiuretic hormone release, and is therefore crucial for body fluid homeostasis. Although this mechanism is known to involve the activation of nonselective cation channels during hypertonicity-evoked shrinking, and the inhibition of these channels during hypotonicity-evoked swelling, the basis for this regulation is unknown. Here, we investigated this process using whole-cell patch-clamp recordings from neurons acutely isolated from the supraoptic nucleus of adult rats. The mechanosensitivity index, defined as the ratio of conductance change to normalized volume change, was quantitatively equivalent whether cell volume was increased or decreased by changes in extracellular fluid osmolality, or by changes in pipette pressure. Moreover, responses induced by hyperosmotic or hypo-osmotic media could be reversed by increasing or decreasing pipette pressure, respectively. The mechanosensitivity index was significantly reduced in neurons treated with cytochalasin-D, a compound that promotes the depolymerization of actin filaments. Conversely, cells treated with jasplakinolide, a compound that promotes actin polymerization, showed a significant increase in mechanosensitivity index. Finally, the depolarizing and excitatory effects of hypertonic stimuli were significantly enhanced by jasplakinolide and reduced by cytochalasin-D. We conclude that osmosensory transduction in these neurons is a reversible mechanical process that depends on an intact actin cytoskeleton, and the sensitivity of the transducer appears to vary in proportion with the density of actin filaments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672547PMC
http://dx.doi.org/10.1523/JNEUROSCI.3278-06.2007DOI Listing

Publication Analysis

Top Keywords

actin filaments
12
osmosensory transduction
12
supraoptic nucleus
8
pipette pressure
8
compound promotes
8
actin
5
neurons
5
filaments mediate
4
mediate mechanical
4
mechanical gating
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Melanocortin 5 receptor signaling protects against podocyte injury in proteinuric glomerulopathies.

Kidney Int

January 2025

Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Rhode Island Hospital, the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA. Electronic address:

Melanocortin therapeutics, exemplified by adrenocorticotropic hormone, have a proven steroidogenic-independent anti-proteinuric and glomerular protective effect. The biological functions of melanocortins are mediated by melanocortin receptors (MCR), including MC1R, which recent studies have shown to protect against glomerular disease. However, the role of other MCRs like MC5R is unknown.

View Article and Find Full Text PDF

Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.

View Article and Find Full Text PDF

For investigating the host response in associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with with New Delhi metallo-β-lactamase (NDM, before treatment), A.

View Article and Find Full Text PDF

: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!