Microglia participate in immune responses in the brain. However, little is known about the contact-mediated interaction between microglia and neurons. We report here that the cell-to-cell contacts between microglial processes and dendrites of hippocampal CA1 neurons were dramatically increased in density and area following local injection of kainic acid (KA). A similar KA-induced increase in the degree of intercellular contacts was observed in mice lacking telencephalin (TLCN), a neuronal dendritic adhesion molecule of ICAM family. The results suggest that adhesive contacts independent of TLCN and contact-mediated interactions between microglia and dendrites were promoted by excitotoxic brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2007.03.005DOI Listing

Publication Analysis

Top Keywords

cell-to-cell contacts
8
enhanced cell-to-cell
4
contacts
4
contacts activated
4
microglia
4
activated microglia
4
microglia pyramidal
4
pyramidal cell
4
cell dendrites
4
dendrites kainic
4

Similar Publications

miR-224 activates cancer-associated fibroblasts to enhance lung cancer cell migration and invasion by targeting Akirin1.

Sci Rep

January 2025

Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Korea.

Cancer-associated fibroblasts (CAFs) actively contribute to the formation of tumor-supportive microenvironments, thereby promoting cancer progression and impacting therapeutic outcomes. This study utilized global microRNA (miRNA) expression profiling to identify specific miRNAs responsible for reprogramming normal lung fibroblasts (LFs) into CAFs. miR-224 demonstrates increased expression in CAFs, and its levels are elevated in lung tumors compared to those in normal tissues, according to data from public databases.

View Article and Find Full Text PDF

Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option.

View Article and Find Full Text PDF

Tau destabilization in a familial deletion mutant K280 accelerates its fibrillization and enhances the seeding effect.

J Biol Chem

January 2025

Genomics Research Center, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica; Institute of Biochemical Sciences, National Taiwan University; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan. Electronic address:

Tauopathies cover a range of neurodegenerative diseases in which natively unfolded tau protein aggregates and spreads in the brain during disease progression. To gain insights into the mechanism of tau structure and spreading, here, we examined the biochemical and cellular properties of human full-length wild-type and familial mutant tau, ΔK280, with a deletion at lysine 280. Our results showed that both wild-type and mutant tau are predominantly monomeric by analytical ultracentrifugation.

View Article and Find Full Text PDF

Recent advances in the role of mesenchymal stem cells as modulators in autoinflammatory diseases.

Front Immunol

January 2025

Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.

Mesenchymal stem cells (MSCs), recognized for their self-renewal and multi-lineage differentiation capabilities, have garnered considerable wide attention since their discovery in bone marrow. Recent studies have underscored the potential of MSCs in immune regulation, particularly in the context of autoimmune diseases, which arise from immune system imbalances and necessitate long-term treatment. Traditional immunosuppressive drugs, while effective, can lead to drug tolerance and adverse effects, including a heightened risk of infections and malignancies.

View Article and Find Full Text PDF

Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm.

Neurochem Int

January 2025

Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:

The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!