In this study, 12 catchments sites located along the north coast of New South Wales in Australia were grouped into the four categories of septic, cattle, sewage treatment plant (STP) and forested sites via cluster analysis based on their land use patterns. Water samples from all these sites were collected between October 2004 and June 2006 at a regular monthly interval and within 48 h of rain events. The samples were analyzed for bacterial counts including faecal coliform and total coliform; faecal sterols including coprostanol, epicoprostanol, cholesterol, cholestanol, 24-ethylcoprostanol, campesterol, stigmasterol and beta-sitosterol; and the elements including Na, Rb, Sr, Ag, Cd, Sn, Cs, Ba, Hg, Tl, Pb, Bi, U, Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, K, As, Se, P and Mo. Over the course of the sampling period, the STP site had the highest average coprostanol level of 1693+/-567 ng/L which was significantly higher (p<0.05) than the septic sites (190+/-71 ng/L), the cattle sites (163+/-94 ng/L) and forested sites (14+/-4 ng/L). As expected, the forested sites had significantly lower average level of faecal coliforms (373+/-87 cfu/100 mL) compared with the STP (1395+/-574 cfu/100 mL), septic (1243+/-494 cfu/100 mL) and cattle sites (535+/-112 cfu/100 mL). The concentrations of coprostanol were not correlated with the numbers of faecal coliform bacteria when the entire data set was evaluated. The forested sites generally had the lowest average levels of elemental compositions, with significantly lower levels noted for Na, U, Mg, V, Cu, Sr, K, As, P and Mo, whereas Fe was the only element notably higher in the forested sites. Temporal and rain events analyses of the data set revealed that elevated levels of both coprostanol and faecal coliforms were not exclusive to rain events. The average coprostanol levels in rain event samples at each site were not significantly different compared with the corresponding dry event samples. Conversely, faecal coliform numbers increased by 2-4 times in rain events samples from septic, cattle and forested sites, but did not alter in the STP site. Multivariate analyses identified coprostanol and Sr as major contributing factors for the discrimination of septic, cattle, STP and forested sites for both rain and dry events samples. It was clear that each land use type of catchment could be characterized by biochemical, bacteriological and elemental parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2007.02.052 | DOI Listing |
Chemosphere
January 2025
Departamento de Química, Universidade Federal do Paraná, 81531-980, Curitiba-PR, Brasil.
Soil is regarded as a natural repository for strongly adsorbed pollutants since glyphosate (GLY) is preferentially adsorbed by the inorganic fraction of the soil, which may greatly limits its leaching. In this way, understanding how clay mineralogy influences the sorption and transport processes of glyphosate in soils with different mineralogical characteristics is highly relevant. In this work, two clay mineralogy contrasting soils were used to evaluate GLY retention: a Oxisol (OX) with high levels of iron oxides (amorphous and crystalline) and a Inceptisol (IN) with a predominance of kaolinite.
View Article and Find Full Text PDFNat Med
January 2025
Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
Flooding greatly endangers public health and is an urgent concern as rapid population growth in flood-prone regions and more extreme weather events will increase the number of people at risk. However, an exhaustive analysis of mortality following floods has not been conducted. Here we used 35.
View Article and Find Full Text PDFNature
January 2025
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.
Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).
View Article and Find Full Text PDFTrends Immunol
December 2024
Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Core Center Heidelberg, 69120 Heidelberg, Germany. Electronic address:
Immune checkpoint inhibitors (ICIs) have transformed cancer treatment but are frequently associated with immune-related adverse events (irAEs). This article offers a novel synthesis of findings from both preclinical and clinical studies, focusing on the molecular mechanisms driving irAEs across diverse organ systems. It examines key immune cells, such as T cell subsets and myeloid cells, which are instrumental in irAE pathogenesis, alongside an in-depth analysis of cytokine signaling [interleukin (IL)-6, IL-17, IL-4), interferon γ (IFN-γ), IL-1β, tumor necrosis factor α (TNF-α)], integrin-mediated interactions [integrin subunits αITGA)4 and ITGB7], and microbiome-related factors that contribute to irAE pathology.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Environment, Hohai University, Nanjing 210098, China.
Analyzing the distribution characteristics of precipitation pollution intensity in the basin and identifying the main factors affecting the precipitation pollution intensity are the important basis for realizing the accurate management of diffused pollution. Based on the surface water quality data from four typical sections of the main stream of Qinhuai River Basin and rainfall data collected from 2021 to 2022, the distribution characteristics of precipitation pollution intensity in the basin were analyzed, and representative natural and social factors were selected to construct models of the precipitation pollution intensity of ammonia nitrogen (NH-N), permanganate index, and total phosphorus (TP) based on random forest algorithm. Additionally, the main driving factors of precipitation pollution intensity were identified, and the influencing mechanism was analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!