Gap junctions are documented in the human airway epithelium but the functional expression and molecular identity of their protein constituents (connexins, Cx) in the polarized epithelium is not known. To address this question, we documented the expression of a family of epithelial Cx (Cx26, Cx30, Cx30.3, Cx31, Cx31.1, Cx32, Cx37, Cx40, and Cx43) in primary human airway epithelial cells (AEC) grown on porous supports. Under submerged conditions, AEC formed a monolayer of airway cells whereas the air-liquid interface induced within 30-60 days AEC differentiation into a polarized epithelium for up to 6-9 months. Maturation of AEC was associated with the down-regulation of Cx26 and Cx43. The well-differentiated airway epithelium exhibited gap junctional communication between ciliated and between ciliated and basal cells. Interestingly, Cx30 was mostly present between ciliated cells whereas Cx31 was found between basal cells. These results are supportive of the establishment of signal-selective gap junctions with maturation of AEC, likely contributing to support airway epithelium function. These results lay the ground for studying the role of Cx-mediated cell-cell communication during repair following AEC injury and exploring Cx-targeted interventions to modulate the healing process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-0436.2007.00157.x | DOI Listing |
Respir Res
January 2025
Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, Warsaw, 02-097, Poland.
Background: Pathobiology of asthma and chronic obstructive pulmonary disease (COPD) is associated with changes among respiratory epithelium structure and function. Increased levels of PM from urban particulate matter (UPM) are correlated with enlarged rate of asthma and COPD morbidity as well as acute disease exacerbation. It has been suggested that pre-existing pulmonary obstructive diseases predispose epithelium for different biological response than in healthy airways.
View Article and Find Full Text PDFPlacenta
December 2024
Telethon Kids Institute, Wal-yan Respiratory Research Centre, Perth, 6009, Western Australia, Australia.
Introduction: Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities. The aims of the study were to establish whether the receptors for rhinovirus (RV), respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are expressed in the amniotic membrane and whether the pattern of expression is similar to newborn nasal epithelium.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is - in addition to its well-established roles in the lung airway and extrapulmonary organs - increasingly recognized as a key regulator of alveolar homeostasis and defense.
View Article and Find Full Text PDFViruses
December 2024
Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland.
Bovine viral diarrhea virus (BVDV), a pestivirus in the family , is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!