Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Motility and invasiveness events require specific intracellular signaling cascade activations. In cancer liver cells, one of these mechanisms could involve the MAPK MEK/ERK cascade activation which has been shown over expressed and activated in hepatocellular carcinoma. To study whether the MEK/ERK cascade is involved in the motility of HCC, we examined the effect of MEK inhibitor and ERK2 silencing using monolayer wound-healing assays and fluoroblock invasion systems. Evidence was provided that the MAPK cascade is a key transduction pathway which controls HCC cells motility and invasiveness. We could disconnect proliferation to motility using mitomycin C and we established that RNAi-mediated inhibition of ERK2 led to strongly reduced cell motility. To improve our understanding, we analysed the regulation and the role of urokinase receptor (uPAR) in this process. We provided evidence that uPAR was under a MEK/ERK dependent mechanism and blocking uPAR activity using specific antagonist or inhibiting its expression by RNA interference which resulted in complete inhibition of motility. Moreover, we found in MAPK inhibited cultures and in uPAR silencing cells that p70S6K phosphorylation on residue Thr-389 was significantly reduced, whereas Ser-421/Thr-424 phosphorylation did not change. We highlighted that the FRAP/mTOR pathway did not affect motility and Thr-389 phosphorylation. Furthermore, we demonstrated that p70S6K inhibition by RNA interference completely inhibited hepatocarcinoma cell motility. Therefore, targeting uPAR and/or MEK/ERK/S6K by RNA interference could be a major therapeutic strategy for the future treatment of invasive hepatocarcinoma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.21049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!