Over-expression of AND-34/BCAR3/NSP2 (BCAR3) or its binding-partner p130Cas/BCAR1 generates anti-estrogen resistance in human breast cancer lines. Here, we have compared BCAR3 to two related homologs, NSP1 and NSP3/CHAT/SHEP, with regards to expression, anti-estrogen resistance, and signaling. BCAR3 is expressed at higher levels in ERalpha-negative, mesenchymal, than in ERalpha-positive, epithelial, breast cancer cell lines. Characterization of "intermediate" epithelial-like cell lines with variable ER-alpha expression reveals that BCAR3 expression correlates with both mesenchymal and ERalpha-negative phenotypes. Levels of the BCAR3/p130Cas complex correlate more strongly with the ERalpha-negative, mesenchymal phenotype than levels of either protein alone. NSP1 and NSP3 are expressed at lower levels than BCAR3 and without correlation to ERalpha/mesenchymal status. Among NSP-transfectants, only BCAR3 transfectants induce anti-estrogen resistance and augment transcription of cyclin D1 promoter constructs. Over-expression of all homologs results in activation of Rac, Cdc42 and Akt, suggesting that these signals are insufficient to induce anti-estrogen resistance. BCAR3 but not NSP1 nor NSP3 transfectants show altered morphology, transitioning from polygonal cell groups to rounded, single cells with numerous blebs. Whereas stable over-expression of BCAR3 in MCF-7 cells does not lead to classic epithelial-to-mesenchymal transition, it does result in down-regulation of cadherin-mediated adhesion and augmentation of fibronectin expression. These studies suggest that BCAR's ability to induce anti-estrogen resistance is greater than that of other NSP homologs and may result from altered interaction of breast cancer cells with each other and the extracellular matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640322PMC
http://dx.doi.org/10.1002/jcp.21059DOI Listing

Publication Analysis

Top Keywords

anti-estrogen resistance
24
breast cancer
16
induce anti-estrogen
12
nsp homologs
8
cyclin promoter
8
cancer cell
8
bcar3
8
eralpha-negative mesenchymal
8
cell lines
8
nsp1 nsp3
8

Similar Publications

: Estrogen receptor-α coactivator MED1 is overexpressed in 40-60% of human breast cancers, and its high expression correlates with poor disease-free survival of patients undergoing anti-estrogen therapy. However, the molecular mechanism underlying MED1 upregulation and activation in breast cancer treatment resistance remains elusive. : miRNA and mRNA expression analysis was performed using the NCBI GEO database.

View Article and Find Full Text PDF

Loss of ERα involved-HER2 induction mediated by the FOXO3a signaling pathway in fulvestrant-resistant breast cancer.

Biochem Biophys Res Commun

January 2025

Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan; Inada Research Team, Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan. Electronic address:

Article Synopsis
  • * In fulvestrant-resistant breast cancer cells (Ful-R), a loss of ERα and decreased levels of the transcriptional regulator FOXO3a occur, resulting in increased expression of HER2 and enhanced cell proliferation.
  • * Targeting FOXO3a may offer a potential therapeutic strategy for treating HER2-positive, estrogen, and progesterone receptor-negative aggressive breast cancers that have developed resistance to fulvestrant.
View Article and Find Full Text PDF

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network-analyses workflow to identify a comprehensive catalog of contact-induced changes. Conditioned media from MSCs failed to recapitulate genes and proteins, some borrowed and others tumor-intrinsic, induced in cancer cells by direct contact.

View Article and Find Full Text PDF

Background/aim: Precise molecular mechanisms underlying resistance to cisplatin-based chemotherapy remain unclear, while the activity of estrogen receptor-β (ERβ) has been suggested to be associated with chemosensitivity in urothelial cancer. We aimed to determine if GULP1, an adapter protein known to facilitate phagocytosis, could represent a downstream effector of ERβ and thereby modulate cisplatin sensitivity in bladder cancer.

Materials And Methods: GULP1 expression and cisplatin cytotoxicity were compared in bladder cancer lines.

View Article and Find Full Text PDF

: The PI3K/AKT/mTOR (PAM) pathway is frequently activated in gynecological cancers. Many PAM inhibitors selectively target single PAM pathway nodes, which can lead to reduced efficacy and increased drug resistance. To address these limitations, multiple PAM pathway nodes may need to be inhibited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!