Mutations in the coding sequence of the methyl-CpG-binding protein 2 gene (MECP2), which cause Rett syndrome (RTT), have been found in male and female autistic subjects without, however, a causal relation having unequivocally been established. In this study, the MECP2 gene was scanned in a Portuguese autistic population, hypothesizing that the phenotypic spectrum of mutations extends beyond the traditional diagnosis of RTT and X-linked mental retardation, leading to a non-lethal phenotype in male autistic patients. The coding region, exon-intron boundaries, and the whole 3'UTR were scanned in 172 patients and 143 controls, by Detection of Virtually All Mutations-SSCP (DOVAM-S). Exon 1 was sequenced in 103 patients. We report 15 novel variants, not found in controls: one missense, two intronic, and 12 in the 3'UTR (seven in conserved nucleotides). The novel missense change, c.617G > C (p.G206A), was present in one autistic male with severe mental retardation and absence of language, and segregates in his maternal family. This change is located in a highly conserved residue within a region involved in an alternative transcriptional repression pathway, and likely alters the secondary structure of the MeCP2 protein. It is therefore plausible that it leads to a functional modification of MeCP2. MECP2 mRNA levels measured in four patients with 3'UTR conserved changes were below the control range, suggesting an alteration in the stability of the transcripts. Our results suggest that MECP2 can play a role in autism etiology, although very rarely, supporting the notion that MECP2 mutations underlie several neurodevelopmental disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.b.30490 | DOI Listing |
Epilepsy Res
January 2025
Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China; Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an City 710061, China. Electronic address:
Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular Biology and Pathology, National Research Council, 00185, Rome, Italy.
Mutations of the MECP2 gene lead to Rett syndrome (RTT), a rare developmental disease causing severe intellectual and physical disability. How the loss or defective function of MeCP2 mediates RTT is still poorly understood. MeCP2 is a global gene expression regulator, acting at transcriptional and post-transcriptional levels.
View Article and Find Full Text PDFIntroduction: This study designed to examine whether social/ environmental experiences can induce the epigenetic modification, and influence the associated physiology and behaviour. To test this, we have used social stress [prenatal stress (PNS)] model and then housed at environmental enrichment (EE) condition to evaluate the interaction between specific epigenetic modification and its influence on behaviour.
Methods: Pregnant rats were randomly divided into a control group, PNS group, and PNS+EE group.
Radiat Environ Biophys
January 2025
Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.
View Article and Find Full Text PDFJ Endocr Soc
January 2025
Cellular and Molecular Endocrinology Laboratory LIM/25, Division of Endocrinology and Metabolism, Clinicas Hospital, School of Medicine, University of Sao Paulo, 01246-903 Sao Paulo, Brazil.
Human puberty is a dynamic biological process determined by the increase in the pulsatile secretion of GnRH triggered by distinct factors not fully understood. Current knowledge reveals fine tuning between an increase in stimulatory factors and a decrease in inhibitory factors, where genetic and epigenetic factors have been indicated as key players in the regulation of puberty onset by distinct lines of evidence. Central precocious puberty (CPP) results from the premature reactivation of pulsatile secretion of GnRH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!