Linkage studies have suggested a susceptibility locus for late-onset Alzheimer's disease (LOAD) on chromosome 21. A functional candidate gene in this region is the beta-amyloid precursor protein (APP) gene. Previously, coding mutations in APP have been associated with early onset Alzheimer's Disease (EOAD). Three copies of APP are associated with AD pathology in Down's syndrome and in EOAD, suggesting that overexpression of APP may be a risk factor for LOAD. Although APP is a strong functional and positional candidate, to date there has been no thorough investigation using a dense map of SNPs across the APP gene. In order to investigate the role of common variation in the APP gene in the risk of LOAD, we genotyped 44 SNPs, spanning 300 kb spanning the entire gene, in a large case-control series of 738 AD cases and 657 healthy controls. The SNPs showed no association in genotypic or allelic tests, even after stratification for presence or absence of the APOE 4 allele. Haplotype analysis also failed to reveal significant association with any common haplotypes. These results suggest that common variation in the APP gene is not a significant risk factor for LOAD. However, we cannot rule out the possibility that multiple rare variants that increase APP expression or Abeta production might influence the risk for LOAD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.b.30485DOI Listing

Publication Analysis

Top Keywords

app gene
16
alzheimer's disease
12
app
10
late-onset alzheimer's
8
beta-amyloid precursor
8
precursor protein
8
protein app
8
app associated
8
risk factor
8
factor load
8

Similar Publications

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration.

View Article and Find Full Text PDF

Evaluating pathogenicity of variants of unknown significance in APP, PSEN1, and PSEN2.

Neurotherapeutics

January 2025

Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA. Electronic address:

Autosomal dominant Alzheimer's disease (ADAD) is driven by rare variants in APP, PSEN1, and PSEN2. Although more than 200 pathogenic variants in these genes are known to cause ADAD, other variants are benign, may act as risk factors, or may even reduce Alzheimer's disease risk (e.g.

View Article and Find Full Text PDF

Mutations in hnRNP A1 drive neurodegeneration and alternative RNA splicing of neuronal gene targets.

Neurobiol Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:

RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.

View Article and Find Full Text PDF

Background And Objectives: Identifying genetic causes of dementia in patients visiting memory clinics is important for patient care and family planning. Traditional clinical selection criteria for genetic testing may miss carriers of pathogenic variants in dementia-related genes. This study aimed identify how many carriers we are missing and to optimize criteria for selecting patients for genetic counseling in memory clinics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!