A cytogenetic analysis of male crossing over in Drosophila ananassae revealed that cytological exchanges resulted in genetic crossing over, and that chiasma frequency and the genetic recombination correlated positively in chromosomes 2 and 3. Furthermore, the frequency of chromosome breakages correlated positively with chiasma frequency. Paracentric inversion heterozygosity had no detectable influence on the chromosome pairing or exchange events within the inversion loop at meiosis. Scoring of the chiasma demonstrated that males homozygous for the previously mapped enhancers of male crossing over had low frequencies of chiasmata, whereas higher frequencies of chiasmata were observed in males heterozygous for enhancers. The results presented here indicate that the genetic factors controlling male crossing over are involved in the origin of chromosome breakages and in exchange events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/g06-106 | DOI Listing |
Trends Genet
December 2024
Department of Biology, New York University, New York, NY 10003, USA. Electronic address:
Meiotic cells introduce numerous programmed DNA double-strand breaks (DSBs) into their genome to stimulate crossover recombination. DSB numbers must be high enough to ensure each homologous chromosome pair receives the obligate crossover required for accurate meiotic chromosome segregation. However, every DSB also increases the risk of aberrant or incomplete DNA repair, and thus genome instability.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
A physical map of Aegilops geniculata chromosome 7M was constructed, and a novel purple coleoptile gene was localized at 7MS bin FL 0.60-0.65 by development of wheat-Ae.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Clinical Laboratory Science, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia.
Fanconi anemia is a rare chromosomal instability disorder associated with developmental abnormalities, bone marrow failure, and a heightened susceptibility to leukemia and other cancers. It is an autosomal recessive genetic disorder, necessitating both parents to carry the faulty gene. Diagnostic methods include blood tests, chromosome breakage assessments, and genetic testing.
View Article and Find Full Text PDFGenes Cells
December 2024
Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
Completion of DNA replication before chromosome segregation is essential for the stable maintenance of the genome. Under replication stress, DNA synthesis may persist beyond S phase, especially in genomic regions that are difficult to proceed with the replication processes. Incomplete replication in mitosis emerges as non-disjoined segment in mitotic chromosomes leading to anaphase bridges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!