Microvascular development in porcine right and left ventricular walls.

Pediatr Res

Department of Pediatrics, National Cardiovascular Center, Fujishiro-dai, Suita 565-8565, Osaka, Japan.

Published: June 2007

Patients with congenital heart disease who have a morphological right ventricle (RV) serving as a systemic ventricle have an increased incidence of RV dysfunction. A different structural response of microvessels to increased pressure load in the RV is a possible mechanism for this dysfunction. To examine the merit of this hypothesis, we explored the possibility that in the normal heart, the branching architecture of microvasculature in walls of the left ventricle (LV) and RV mature differently. The branching structure of intramyocardial arterioles and their downstream branches were investigated using three-dimensional (3D) micro-computed tomography (CT) images in different regions of the RV and LV walls of normal fetal, 1-mo, and 5-mo old pigs. The results point to a significant difference in the volume of myocardium perfused per vessel cross-sectional area (CSA) between the LV and RV walls at 5 mo. We speculate that this difference may be related to the reserve functional capacity of the LV, which requires a corresponding reserve in the expansion capacity of vasculature in the LV wall.

Download full-text PDF

Source
http://dx.doi.org/10.1203/pdr.0b013e31805365a6DOI Listing

Publication Analysis

Top Keywords

microvascular development
4
development porcine
4
porcine left
4
left ventricular
4
walls
4
ventricular walls
4
walls patients
4
patients congenital
4
congenital heart
4
heart disease
4

Similar Publications

Introduction: Diabetic retinopathy is a significant microvascular disorder and the leading cause of vision impairment in working-age individuals. Hyperglycemia triggers retinal damage through mechanisms such as the polyol pathway and the accumulation of advanced glycation end products (AGEs). Inhibiting key enzymes in this pathway, aldose reductase (AR) and sorbitol dehydrogenase (SD), alongside preventing AGE formation, may offer therapeutic strategies for diabetic retinopathy and other vascular complications.

View Article and Find Full Text PDF

Ultrasound localization microscopy (ULM) enables microvascular imaging at spatial resolutions beyond the acoustic diffraction limit, offering significant clinical potentials. However, ULM performance relies heavily on microbubble (MB) signal sparsity, the number of detected MBs, and signal-to-noise ratio (SNR), all of which vary in clinical scenarios involving bolus MB injections. These sources of variations underscore the need to optimize MB dosage, data acquisition timing, and imaging settings in order to standardize and optimize ULM of microvasculature.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma.

J Comput Assist Tomogr

November 2024

From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.

Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.

Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.

View Article and Find Full Text PDF

Background: Large hepatocellular carcinoma (HCC) is difficult to resect and accompanied by poor outcome. The aim was to evaluate the short-term and long-term outcomes of patients who underwent liver resection for large HCC, eventually drawing prediction models for short-term and long-term outcomes.

Methods: 1710 large HCC patients were recruited and randomly divided into the training (n = 1140) and validation (n = 570) cohorts in a 2:1 ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!