Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a fatty acid-activated transcription factor that governs a variety of biological processes. Little is known about the role of PPARalpha in the small intestine. Since this organ is frequently exposed to high levels of PPARalpha ligands via the diet, we set out to characterize the function of PPARalpha in small intestine using functional genomics experiments and bioinformatics tools. PPARalpha was expressed at high levels in both human and murine small intestine. Detailed analyses showed that PPARalpha was expressed most highly in villus cells of proximal jejunum. Microarray analyses of total tissue samples revealed, that in addition to genes involved in fatty acid and triacylglycerol metabolism, transcription factors and enzymes connected to sterol and bile acid metabolism, including FXR and SREBP1, were specifically induced. In contrast, genes involved in cell cycle and differentiation, apoptosis, and host defense were repressed by PPARalpha activation. Additional analyses showed that intestinal PPARalpha-dependent gene regulation occurred in villus cells. Functional implications of array results were corroborated by morphometric data. The repression of genes involved in proliferation and apoptosis was accompanied by a 22% increase in villus height and a 34% increase in villus area of wild-type animals treated with WY14643. This is the first report providing a comprehensive overview of processes under control of PPARalpha in the small intestine. We show that PPARalpha is an important transcriptional regulator in small intestine, which may be of importance for the development of novel foods and therapies for obesity and inflammatory bowel diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/physiolgenomics.00198.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!