AI Article Synopsis

Article Abstract

The cohesive strength of microbial biofilms cultivated on a rotating disc has been measured using fluid dynamic gauging (FDG). The thickness of heterotrophic mixed culture biofilms was found to depend on substrate concentration and shear force at the biofilm surface during the cultivation. For high substrate concentrations and low shear forces the biofilm thickness increased to several 100 microm within 7 days. Low substrate concentration and higher shear forces yielded thin biofilms of about 100 microm thickness. Independent from cultivation conditions and thickness of the biofilms their cohesive strength ranged between 6.0 and 7.7 N m(-2). The ratio between cohesive strength measured with FDG and shear forces applied during biofilm cultivation have ranged from 200 to 1,100. Higher concentrations of iron in the cultivation media has a positive effect on the stability of the biofilms cultivated. By using the CLSM technique a stable base biofilm with a high amount of stained EPS glycoconjugates could be visualized after gauging. The thickness of the base biofilm was about 100 microm for all biofilms cultivated and was not removable under the applied shear conditions used during FDG.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.21448DOI Listing

Publication Analysis

Top Keywords

cohesive strength
12
biofilms cultivated
12
shear forces
12
100 microm
12
strength microbial
8
microbial biofilms
8
fluid dynamic
8
dynamic gauging
8
rotating disc
8
substrate concentration
8

Similar Publications

The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.

Mater Today Bio

February 2025

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.

Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.

View Article and Find Full Text PDF

The ore mining sites commonly experience slope instability, which is causing concern for the workers' safety and the operation's stability. Considering the Ziluoyi iron ore mining site as a case study, uniaxial compression strength and shear tests are performed on the lower disk peripheral rock, ore body, and upper disk peripheral rock, leading to the extraction of compressive strength and elastic modulus (lower disk: 77.7 MPa-9.

View Article and Find Full Text PDF

A roadmap from the bond strength to the grain-boundary energies and macro strength of metals.

Nat Commun

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China.

Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals.

View Article and Find Full Text PDF

Objective: To evaluate the influence of different cleaning methods, surface treatments, and aging on the repair bond strength to a CAD/CAM glass-ceramic.

Materials And Methods: Forty-eight lithium disilicate CAD/CAM ceramic blocks were fabricated, sintered, and embedded in acrylic resin. After contamination with human saliva, they were divided according to the factors "Cleaning method" (Control-water/air spray, Air-particle abrasion with AlO, Ivoclean cleaning paste), "Surface treatment" (5% Hydrofluoric acid-HF + Silane, Monobond Etch & Prime-MEP), and "Aging" (thermocycling, no thermocycling).

View Article and Find Full Text PDF

An analytical study of active earth pressure in cohesive soil considering interlayer shear stress.

PLoS One

January 2025

Ltd Project Construction Management Company, Jiangxi Provincial Communications Investment Group Co., Nanchang, China.

The impact of interlayer shear stress on the distribution of earth pressure in cohesive soil is notable, but currently, there lacks a comprehensive theory that integrates this factor in the calculation of active earth pressure. Drawing from the Mohr stress circle specific to clay soils, a formula to calculate interlayer shear stress has been derived. Moreover, a robust model has been formulated to compute the active earth pressure in clay soils, incorporating elements such as interlayer shear stress, effects of displacement, soil arching, and the morphology of the sliding surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!