Myofibrillogenesis regulator-1 (MR-1) augments cardiomyocytes hypertrophy induced by angiotensin II (Ang II) in vitro. However, its roles in cardiac hypertrophy in vivo remain unknown. Here, we investigate whether MR-1 can promote cardiac hypertrophy induced by Ang II in vivo and elucidate the molecular mechanisms of MR-1 on cardiac hypertrophy. We used a model of Ang II-induced cardiac hypertrophy by infusion of Ang II in female mice. In wild-type mice subjected to the Ang II infusion, cardiac hypertrophy developed after 2 weeks. In mice overexpressing human MR-1 (transgenic), however, cardiac hypertrophy was significantly greater than in wild-type mice as estimated by heart weight:body weight ratio, cardiomyocyte area, and echocardiographic measurements, as well as cardiac atrial natriuretic peptide and B-type natriuretic peptide mRNA and protein levels. Our further results showed that cardiac inflammation and fibrosis observed in wild-type Ang II mice were augmented in transgenic Ang II mice. Importantly, increased nuclear factor kappaB activation was significantly increased higher in transgenic mice compared with wild-type mice after 2 weeks of Ang II infusion. In vitro experiments also revealed that overexpression of MR-1 enhanced Ang II-induced nuclear factor kappaB activation, whereas downregulation of MR-1 blocked it in cardiac myocytes. In conclusion, our results suggest that MR-1 plays an aggravative role in the development of cardiac hypertrophy via activation of the nuclear factor kappaB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.106.085399 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.
Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.
View Article and Find Full Text PDFJ Transl Med
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China.
Background: Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Infiltration and alterations in non-cardiomyocytes of the human heart involve crucially in the occurrence of DCM and associated immunotherapeutic approaches.
Methods: We constructed a single-cell transcriptional atlas of DCM and normal patients.
Zhonghua Bing Li Xue Za Zhi
January 2025
Department of Pathology, the Seventh Medical Center of People's Liberation Army of China General Hospital, Beijing100700, China.
To analyze the morphologic changes and the extent of severity in end-stage heart disease; and to explore the correlation with their clinical features. Twelve cases of recipients who underwent pediatric cardiac allograft transplantation were collected from May 2022 to November 2023 at the Seventh Medical Center of People's Liberation Army of China General Hospital. Gross pathologic examinations were performed and morphological changes were observed under a light microscope after HE, Masson's trichrome, and reticulin staining.
View Article and Find Full Text PDFMetabolism
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:
Aims: Obesity, as a worldwide healthcare problem, has become more prevalent. ZFP36 is a well-known RNA-binding protein and involved in the posttranscriptional regulation of many physiological processes. Whether the adipose ZFP36 plays a role in obesity and insulin resistance remains unclear.
View Article and Find Full Text PDFPrenat Diagn
January 2025
Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
Objective: To report a case of a fetus with multiple congenital anomalies and suspected Barth syndrome, highlighting potential phenotypic expansion of the syndrome.
Methods: A 32-year-old G4P2011 patient was referred at 18w5d gestation for suspected fetal encephalocele. Serial imaging, including ultrasound and MRI, was performed to evaluate fetal anomalies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!