Humans and chimpanzees share >99% identity in most proteins. One rare difference is a human-specific inactivating deletion in the CMAH gene, which determines biosynthesis of the sialic acid N-glycolylneuraminic acid (Neu5Gc). Since Neu5Gc is prominent on most chimpanzee cell surfaces, this mutation could have affected multiple systems. However, Neu5Gc is found in human cancers and fetuses and in trace amounts in normal human tissues, suggesting an alternate biosynthetic pathway. We inactivated the mouse Cmah gene and studied the in vivo consequences. There was no evidence for an alternate pathway in normal, fetal, or malignant tissue. Rather, null fetuses accumulated Neu5Gc from heterozygous mothers and dietary Neu5Gc was incorporated into oncogene-induced tumors. As with humans, there were accumulation of the precursor N-acetylneuraminic acid and increases in sialic acid O acetylation. Null mice showed other abnormalities reminiscent of the human condition. Adult mice showed a diminished acoustic startle response and required higher acoustic stimuli to increase responses above the baseline level. In this regard, histological abnormalities of the inner ear occurred in older mice, which had impaired hearing. Adult animals also showed delayed skin wound healing. Loss of Neu5Gc in hominid ancestors approximately 2 to 3 million years ago likely had immediate and long-term consequences for human biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1900035 | PMC |
http://dx.doi.org/10.1128/MCB.00379-07 | DOI Listing |
Carbohydr Polym
March 2025
Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
The major hurdle of xenotransplantation is the immune response triggered by human natural antibodies interacting with carbohydrate antigens on the transplanted animal organ. Specifically, terminal glycoprotein motifs such as galactose-α1,3-galactose (α-Gal) and N-glycolylneuraminic acid (Neu5Gc) are significant obstacles. Little is known about the abundance and compositions of asparagine-linked complex carbohydrates (N-glycans) carrying these motifs in mammalian organs.
View Article and Find Full Text PDFCell Biol Int
January 2025
Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Leishmaniases affect millions of people around the world, caused by Leishmania parasites. Leishmania are transmitted by female sandflies from Phlebotominae subfamily during their blood meals. In mammals, promastigotes are phagocytosed mainly by macrophages, differentiate into amastigotes and multiply.
View Article and Find Full Text PDFBioTech (Basel)
November 2024
Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, 501-201, 501, Jinju-Daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea.
Sialic acid is a diverse group of monosaccharides often found on the termini of - and -linked glycans as well as being components of glycoconjugates. Hypersialylation has been associated with the progression of chronic inflammation-mediated diseases such as cardiovascular disease and cancer. Given its role in infection and disease-related processes, sialic acid is a promising target for therapeutic approaches that utilize carbohydrate-binding molecules.
View Article and Find Full Text PDFJ Adv Res
October 2024
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China. Electronic address:
Mol Biotechnol
October 2024
School of Chemical, Materials and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!