Competitive adsorption of the nonionic polymer poly(ethylene oxide) (PEO) and the nonionic surfactant of the type poly(ethylene oxide) alkyl ether from aqueous solutions on a silica surface is examined. From one-component solutions, both species readily adsorb onto silica and, in the bulk of mixed (two-component) solutions, polymer-surfactant complexes are not observed. Because both species bind by the same mechanism to silica, subtle differences in layer structure, or other species-specific parameters, determine whether one or both of the species will adsorb. It was found that various surfactants can displace PEO up to a certain critical molecular weight. Surfactants with a high aggregation number, in bulk and on the surface, can displace PEO with a higher molar mass than surfactants with a low aggregation number. As the molar mass of the polymer increases, the time a surfactant needs to completely displace the polymer increases. We can explain both the existence of the critical molar mass and the decrease in adsorption kinetics with a shift in the critical surface association concentration (CSAC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la063525z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!