Structural requirements for compounds involved in Allium discoloration have been investigated in detail. The abilities of all 20 protein amino acids and six naturally occurring 1-propenyl-containing thiosulfinates to form the pigments have been studied. Furthermore, several analogues of these thiosulfinates were prepared by synthesis, and their color-forming abilities were evaluated, together with those of various amino compounds. It has been found that an unsubstituted primary amino group and a free carboxyl group are essential structural features required for amino compounds to be able to generate the pigments. Out of the thiosulfinate analogues tested, only those containing at least a three-carbon chain with the beta-carbon bearing a hydrogen atom yielded the pigments after reacting with glycine. Thiosulfonates, sulfoxides, sulfides, and disulfides did not form any colored products when mixed with glycine. The pH optimum for pigment formation has been found to be between 5.0 and 6.0 for all thiosulfinates tested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf070040nDOI Listing

Publication Analysis

Top Keywords

allium discoloration
8
amino acids
8
structural requirements
8
amino compounds
8
amino
5
discoloration color-forming
4
color-forming potential
4
potential individual
4
thiosulfinates
4
individual thiosulfinates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!