Modificomics: posttranslational modifications beyond protein phosphorylation and glycosylation.

Biomol Eng

University of Wuerzburg, Proteomics Group, Pharmaceutical Biology, Julius-von-Sachs-Institute for Biosciences, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.

Published: June 2007

Posttranslational modifications of proteins possess key functions in the regulation of various cellular processes. While they facilitate fast, location-specific and transient reactions to changing conditions in the first place they enhance the already high complexity of a cellular proteome by orders of magnitude. Furthermore, they can utterly alter the properties of the modified protein, thus making a timely analysis even more difficult. While several standardized methods for the analysis of protein phosphorylation and glycosylation have been established most other modifications require tailor-made solutions for a comprehensive analysis. Therefore, we will provide guidelines for the analysis of some important posttranslational modifications that are underrepresented in contemporary literature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioeng.2007.03.002DOI Listing

Publication Analysis

Top Keywords

posttranslational modifications
12
protein phosphorylation
8
phosphorylation glycosylation
8
modificomics posttranslational
4
modifications
4
modifications protein
4
glycosylation posttranslational
4
modifications proteins
4
proteins possess
4
possess key
4

Similar Publications

Unlocking Platelet Mechanisms through Multi-Omics Integration: A Brief Review.

Curr Cardiol Rev

January 2025

Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.

Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.

View Article and Find Full Text PDF

High interstitial fluid pressure enhances USP1-dependent KIF11 protein stability to promote hepatocellular carcinoma progression.

J Transl Med

January 2025

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.

Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.

Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.

View Article and Find Full Text PDF

Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!