Purpose: To investigate bystander mutagenic effects induced by alpha-particles during boron neutron capture therapy, we mixed cells that were electroporated with borocaptate sodium (BSH), which led to the accumulation of (10)B inside the cells, and cells that did not contain the boron compound. The BSH-containing cells were irradiated with alpha-particles produced by the 10B(n,alpha)7Li reaction, whereas cells without boron were affected only by the 1H(n,gamma)2H and 14N(n,rho)14C reactions.

Methods And Materials: The lethality and mutagenicity measured by the frequency of mutations induced in the hypoxanthine-guanine phosphoribosyltransferase locus were examined in Chinese hamster ovary cells irradiated with neutrons (Kyoto University Research Reactor: 5 MW). Neutron irradiation of 1:1 mixtures of cells with and without BSH resulted in a survival fraction of 0.1, and the cells that did not contain BSH made up 99.4% of the resulting cell population. The molecular structures of the mutations were determined using multiplex polymerase chain reactions.

Results: Because of the bystander effect, the frequency of mutations increased in the cells located nearby the BSH-containing cells compared with control cells. Molecular structural analysis indicated that most of the mutations induced by the bystander effect were point mutations and that the frequencies of total and partial deletions induced by the bystander effect were less than those induced by the original neutron irradiation.

Conclusion: These results suggested that in boron neutron capture therapy, the mutations caused by the bystander effect and those caused by the original neutron irradiation are induced by different mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2007.02.002DOI Listing

Publication Analysis

Top Keywords

boron neutron
12
neutron capture
12
capture therapy
12
cells
11
cells boron
8
bsh-containing cells
8
cells irradiated
8
frequency mutations
8
mutations induced
8
neutron irradiation
8

Similar Publications

Purpose: Boron neutron capture therapy (BNCT) perform as a treatment option for locally advanced or recurrent unresectable head and neck cancers since June 2020 in Japan. The effect of BNCT on parotid carcinoma, which presents a variety of histologic types, remains unclear. The object of this study was to investigate the antitumor efficacy of BNCT against parotid gland carcinoma by focusing on LAT1, which is involved in the uptake of L-BPA, the boron compound used in BNCT.

View Article and Find Full Text PDF

A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.

View Article and Find Full Text PDF

Rechargeable lithium-ion batteries (LIBs) are critical for enabling sustainable energy storage. The capacity of cathode materials is a major limiting factor in the LIB performance, and doping has emerged as an effective strategy for enhancing the electrochemical properties of nickel-rich layered oxides such as NCM811. In this study, boron is homogeneously incorporated into the tetrahedral site of NCM811 through co-precipitation, leading to an inductive effect on transition metal (TM)-O-B bonds that delayed structural collapse and reduced oxygen release.

View Article and Find Full Text PDF

Transcriptome analysis of human oral squamous cancer SAS cells as an early response after boron neutron capture therapy.

Appl Radiat Isot

January 2025

Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:

Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.

View Article and Find Full Text PDF

This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!