Desminopathy represents a subgroup of myofibrillar myopathies caused by mutations in the desmin gene. Three novel disease-associated mutations in the desmin gene were identified in unrelated Spanish families affected by cardioskeletal myopathy. A selective pattern of muscle involvement, which differed from that observed in myofibrillar myopathy resulting from mutations in the myotilin gene, was observed in each of the three families with novel mutations and each of three desminopathy patients with known desmin mutations. Prominent joint retractions at the ankles and characteristic nasal speech were observed early in the course of illness. These findings suggest that muscle imaging in combination with routine clinical and pathological examination may be helpful in distinguishing desminopathy from other forms of myofibrillar myopathy and ordering appropriate molecular investigations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5127195PMC
http://dx.doi.org/10.1016/j.nmd.2007.02.009DOI Listing

Publication Analysis

Top Keywords

mutations desmin
12
desmin gene
12
three novel
8
novel mutations
8
myofibrillar myopathy
8
mutations
6
phenotypic patterns
4
desminopathy
4
patterns desminopathy
4
desminopathy associated
4

Similar Publications

Background: Cardiomyopathy is a disease that affects the myocardium and can be classified as dilated, restrictive, or hypertrophic cardiomyopathy. Among the subtypes, restrictive cardiomyopathy is characterized by restriction of ventricular filling and its uncommon cause is a disease due to mutation on Filamin C (FLNC) gene. Filamin C is an actin-binding protein encoded by FLNC gene and participates in sarcomere stability maintenance, which is expressed on the striated muscle.

View Article and Find Full Text PDF

Atypical polypoid adenomyoma (APA) is a benign uterine lesion with a premalignant potential and occurs in women of reproductive age. The histological pattern is characterized by irregular epithelial proliferation and muscular stroma. Based on a case report, we performed a systematic review of the literature to assess the main immunohistochemical and molecular markers that contribute to its differential diagnosis against endometrial adenocarcinoma (EC).

View Article and Find Full Text PDF

ERBB2/ERBB3-mutated S100/SOX10-positive uterine sarcoma: something new.

Virchows Arch

December 2024

Department of Pathology, University of California San Diego Health, 9300 Campus Point Drive, Suite 1-200, La Jolla, MC 7723, San Diego, CA, 92037, USA.

A distinctive subset of uterine mesenchymal tumors display recurrent genetic fusions involving receptor tyrosine kinases, including NTRK, PDGFB, FGFR1, and RET, presumably leading to aberrant pathway activation. A pair of recent studies have highlighted the existence of a genetic fusion-negative uterine sarcoma that is characterized by activating mutations in ERBB2/ERBB3, CDKN2A deletion, inactivating ATRX mutation, and a S100 + /SOX10 + immunohistochemical profile. This report describes another case of this emerging entity that was diagnosed in a 57-year-old woman.

View Article and Find Full Text PDF
Article Synopsis
  • Protein quality control (PQC) is essential for the function of heart cells, and certain mutations (like R120G in CRYAB and P209L in BAG3) can lead to the buildup of harmful protein aggregates and heart diseases.
  • The study explored how these protein aggregates are taken up by mitochondria and removed through a process called mitophagy, especially in mice lacking the TRAF2 protein, which is necessary for mitophagy.
  • Results showed that without TRAF2, there was an increase in protein aggregates and misplacement of other proteins, indicating that proper mitophagy is critical for preventing cardiac dysfunction.
View Article and Find Full Text PDF

To investigate the clinicopathological features, immunophenotype, molecular characteristics, and differential diagnosis of primary intracranial DICER1-mutant sarcoma in order to better understand this tumor type. A retrospective analysis was conducted on 7 cases of primary intracranial DICER1-mutant sarcoma diagnosed in the Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China between 2021 and 2023 using next-generation sequencing. At the same time, 10 gliosarcomas, 4 intracranial FET::CREB fusion-positive mesenchymal tumors, 4 malignant meningiomas, 3 malignant solitary fibrous tumors, 3 malignant peripheral nerve sheath tumors, 3 synovial sarcomas and 3 rhabdomyosarcomas (total 30 cases) were selected as control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!