The effects of extra virgin olive oil (EV-olive oil) on triglyceride metabolism were investigated by measuring the degree of thermogenesis in interscapular brown adipose tissue (IBAT) and the rates of noradrenaline and adrenaline secretions in rats, both in vivo and in situ. In Experiment 1 (in vivo), rats were given an isoenergetic high-fat diet (30% fat diet) containing corn oil, refined olive oil, or EV-olive oil. After 28 days of feeding, the final body weight, weight gain, energy efficiency, perirenal adipose tissue and epididymal fat pad and plasma triglyceride concentrations were the lowest in the rats fed the EV-olive oil diet. The content of uncoupling protein 1 (UCP1) in IBAT and the rates of urinary noradrenaline and adrenaline excretions were the highest in the rats fed the EV-olive oil diet. In Experiment 2 (in situ), the effects of the extract of the phenolic fraction from EV-olive oil and a compound having excellent characteristics as components of EV-olive oil, hydroxytyrosol, on noradrenaline and adrenaline secretions were evaluated. The intravenous administration of the extract of the phenolic fraction from EV-olive oil significantly increased plasma noradrenaline and adrenaline concentrations, whereas that of hydroxytyrosol had no effect. These results suggest that phenols except hydroxytyrosol in EV-olive oil enhance thermogenesis by increasing the UCP1 content in IBAT and enhancing noradrenaline and adrenaline secretions in rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2006.11.009 | DOI Listing |
Food Chem
December 2015
Chemical Laboratory of Palermo, Italian Customs and Monopolies Agency, via Crispi, 143, 90133 Palermo, Italy.
In this study extra virgin olive oils of Italian and non-Italian origin (from Spain, Tunisia and blends of EU origin) were differentiated by GC-FID analysis of sterols and esterified sterols followed by chemometric tools. PCA allowed to highlight the high significance of esterified sterols to characterise extra virgin olive oils in relation to their origin. SIMCA provided a sensitivity and specificity of 94.
View Article and Find Full Text PDFNutrients
June 2014
Surgical Registrar, University Hospital Southampton, Southampton SO16 6YD, UK.
We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only.
View Article and Find Full Text PDFJ Mass Spectrom
October 2013
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
Direct infusion electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS] is used to obtain fingerprints of aqueous-methanolic extracts of two types of olive oils, extra virgin (EV) and ordinary (OR), as well as of samples of EV olive oil adulterated by the addition of OR olive oil and other edible oils: corn (CO), sunflower (SF), soybean (SO) and canola (CA). The MS data is treated by the partial least squares discriminant analysis (PLS-DA) protocol aiming at discriminating the above-mentioned classes formed by the genuine olive oils, EV (1) and OR (2), as well as the EV adulterated samples, i.e.
View Article and Find Full Text PDFBiofactors
October 2012
Department of Clinical and Dental Sciences, Polytechnic University of Marche, Ancona, Italy.
Olive oil consumption is associated with protective cardiovascular properties, including some beneficial modifications in lipoprotein profile and composition. Coenzyme Q(10) (CoQ(10)) exerts a protective effect on plasma lipoproteins. Aim of the study was to investigate whether extra virgin (EV) olive oil enriched with CoQ(10) affects CoQ(10) levels and oxidative status in plasma and in isolated lipoproteins.
View Article and Find Full Text PDFBr J Nutr
October 2011
Department of Biochemistry, Biology and Genetics, Polytechnic University of Marche, Via Ranieri, 60100 Ancona, Italy.
Menaquinone-7 (MK-7), a member of the vitamin K2 family, performs several functions, all related to its recognised effect on post-translational carboxylation of certain protein-bound glutamate residues. Due to its lipophilic structure MK-7 is soluble in olive oil, so the aim of the present study was to test whether extra-virgin (EV) olive oil enriched with MK-7 significantly increases MK-7 plasma levels and has an effect on osteocalcin and its carboxylation status. Healthy young volunteers (n 12) were administered 20 ml EV olive oil per d for 2 weeks, followed by 2 weeks of the same amount of olive oil enriched with 45 μg and then 90 μg MK-7, with an appropriate washout time in between.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!