Purpose: Choroidal neovascularization (CNV) is the most severe complication in age-related macular degeneration. The major angiogenic factor involved is vascular endothelial growth factor (VEGF) secreted by the retinal pigment epithelium (RPE). Since RPE cells express neuroendocrine L-type Ca2+ channels we investigated their involvement in VEGF secretion in normal RPE cells and RPE cells from patients with CNV.

Methods: Freshly isolated and cultured RPE cells were studied using the patch-clamp technique and ELISA-based secretion assays.

Results: Both freshly isolated and cultured cells showed whole-cell Ba2+ currents with properties of L-type Ca2+ currents: high activation threshold, sensitivity to dihydropyridines (10 muM nifedipine) and slow inactivation. VEGF-A secretion was elevated by BayK8644 (10 microM) or basic fibroblast growth factor (bFGF, 10 ng/ml), both of which are able to activate L-type channels. Cells from CNV tissue also showed nifedipine-sensitive Ba2+ currents, which displayed a voltage-dependent activation at more negative potentials, faster inactivation and changed regulation by tyrosine kinase pp60(c-src). The CNV RPE cells showed higher VEGF secretion rates which were reduced by nifedipine.

Conclusions: Thus, L-type Ca2+ channels in normal RPE cells regulate the secretion of VEGF. RPE cells from eyes with CNV maintain a VEGF secretion regulated by nifedipine-sensitve Ca2+ channels which might be of importance for the development of CNV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647973PMC

Publication Analysis

Top Keywords

rpe cells
28
ca2+ channels
16
growth factor
12
l-type ca2+
12
vegf secretion
12
cells
10
retinal pigment
8
cells regulate
8
vascular endothelial
8
endothelial growth
8

Similar Publications

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.

View Article and Find Full Text PDF

Accumulation of autophagosomes in aging human photoreceptor cell synapses.

Exp Eye Res

January 2025

Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Autophagy is common in the aging retinal pigment epithelium (RPE). A dysfunctional autophagy in aged RPE is implicated in the pathogenesis of age-related macular degeneration. Aging human retina accompanies degenerative changes in photoreceptor mitochondria.

View Article and Find Full Text PDF

Fractionation and identification of ocular protective compounds from kochiae fructus against oxidative damage in retinal pigment epithelium cells.

J Ethnopharmacol

January 2025

Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, 40447, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Master Program of Pharmaceutical Manufacture, College of Pharmacy, China Medical University, Taichung, 40402, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan. Electronic address:

Ethnopharmacological Relevance: Kochiae Fructus, the ripe fruit of Kochia scoparia, is a traditional Chinese medicine commonly used to treat eye discomforts and vision problems. Although Kochiae Fructus is mentioned in many classical Chinese medical texts, its protective effects and the roles of its active phytochemicals in eye treatment still lack scientific exploration.

Aim Of The Study: This study aimed to clarify the protective effects and identify the active fractions and compounds of Kochiae Fructus against oxidative stress-induced retinal pigment epithelium (RPE) cell death.

View Article and Find Full Text PDF

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.

View Article and Find Full Text PDF

Epithelial‒mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells is believed to play a key role in the pathogenesis of proliferative vitreoretinopathy (PVR). The ability of Hirudo to promote blood flow and dispel blood stasis may be related to its anti-EMT effects. Through the use of a network pharmacology method, the mechanism by which Hirudo treats PVR was investigated in this study, and the findings were confirmed through in vitro cellular tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!