We analyzed data on multilocus sequence typing (MLST), ABC typing, mating type-like locus (MAT) status, and antifungal susceptibility for a panel of 1,391 Candida albicans isolates. Almost all (96.7%) of the isolates could be assigned by MLST to one of 17 clades. eBURST analysis revealed 53 clonal clusters. Diploid sequence type 69 was the most common MLST strain type and the founder of the largest clonal cluster, and examples were found among isolates from all parts of the world. ABC types and geographical origins showed statistically significant variations among clades by univariate analysis of variance, but anatomical source and antifungal susceptibility data were not significantly associated. A separate analysis limited to European isolates, thereby minimizing geographical effects, showed significant differences in the proportions of isolates from blood, commensal carriage, and superficial infections among the five most populous clades. The proportion of isolates with low antifungal susceptibility was highest for MAT homozygous a/a types and then alpha/alpha types and was lowest for heterozygous a/alpha types. The tree of clades defined by MLST was not congruent with trees generated from the individual gene fragments sequenced, implying a separate evolutionary history for each fragment. Analysis of nucleic acid variation among loci and within loci supported recombination. Computational haplotype analysis showed a high frequency of recombination events, suggesting that isolates had mixed evolutionary histories resembling those of a sexually reproducing species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951527 | PMC |
http://dx.doi.org/10.1128/EC.00041-07 | DOI Listing |
Antimicrob Agents Chemother
January 2025
Department of Biology, Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.
The incidence of non- infections has witnessed a substantial rise in recent decades. ), an opportunistic human fungal pathogen, is accountable for both superficial mucosal and life-threatening bloodstream infections, particularly in immunocompromised individuals. Distinguished by its remarkable resilience to environmental stressors, exhibits intrinsic tolerance to azoles and a high propensity to swiftly develop azole resistance during treatment.
View Article and Find Full Text PDFVet Sci
January 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain.
Fungal diseases, despite their low incidence in sharks and rays, are considered emerging diseases in this group of animals and can lead to high mortality rates despite treatment. The information available related to the treatment of fungal diseases in elasmobranchs is limited and is frequently based on the empirical knowledge provided by the professionals and clinicians working with these species. The use of azole antifungal drugs, especially voriconazole, has shown promise as a potential treatment option for fungal infections in elasmobranchs, with favorable outcomes in some registered cases.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico.
is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an isolate, we compared it on solid media with the reference strain ATCC 22546 and documented morphological changes during conidial germination.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Kashkin Research Institute of Medical Mycology, North-Western State Medical University Named after I.I. Mechnikov, 191015 Saint Petersburg, Russia.
is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of isolates to evaluate the population and epidemiological diversity of candidiasis in Russia. A total of 112 clinical isolates of were analyzed from May 2017 to March 2023 in 18 hospitals across Saint Petersburg, the Leningrad Region, and Moscow.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba 80250-060, Brazil.
We investigated the molecular mechanisms underlying azole resistance in seven isolates that caused candidemia and candiduria in Paraná, Brazil (2016-2022). Biofilm production, antifungal susceptibility testing, multilocus sequence typing, amplification and sequencing of , and quantification of , , and expression levels were performed. Notably, five isolates (71.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!