Adherence of bacteria to intestinal epithelial cells may be the crucial initiating event for translocation and is normally prevented by both specific (secretory IgA) and nonspecific (mucus, bacterial antagonism, desquamation) mucosal defense mechanisms. The purpose of this study was to examine the effect of dexamethasone administration on mucosal immunity; specifically bacterial adherence and IgA. Twenty Fischer rats were randomly assigned to two groups of 10 animals each. Group I received 0.5 mL saline injection intraperitoneally (IP); and group II, 0.8 mg/150 g body weight dexamethasone IP per day for 2 consecutive days. The cecum mesenteric lymph nodes, and bile were aseptically collected, and bacterial adherence, bacterial translocation, and IgA concentration were determined. Results indicate that, compared with saline-treated animals, dexamethasone-treated animals had a fall in IgA (54 +/- 24 versus 232 +/- 41 micrograms/mg protein), an increase in bacterial adherence (8.2 +/- 0.5 versus 3.4 +/- 0.6 cfu (log10)/g cecum), and an increased incidence of bacterial translocation to the mesenteric lymph nodes (60% versus 0%). These data suggest that glucocorticoids may promote bacterial translocation by impairment of mucosal IgA synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1358497 | PMC |
http://dx.doi.org/10.1097/00000658-199112000-00012 | DOI Listing |
mSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFJ Crohns Colitis
January 2025
Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.
Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.
Indian J Nephrol
June 2024
Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, United States.
Introduction: Acute kidney injury (AKI) is a frequent complication of chronic liver disease (CLD) contributing to high morbidity and mortality worldwide. While liver transplantation (LT) has shown favorable outcomes, early identification and management of AKI is imperative for survival. This review aims to highlight the epidemiology, pathophysiology, management, and prognosis of AKI in CLD.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.
Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.
Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!