AI Article Synopsis

  • The study investigated how dexamethasone, a glucocorticoid, affects mucosal immunity, specifically looking at bacterial adherence and IgA levels in Fischer rats.
  • Rats were divided into two groups; one received saline and the other received dexamethasone, resulting in a significant drop in IgA levels and increased bacterial adherence in the dexamethasone group.
  • The findings suggest that the use of glucocorticoids may impair mucosal defenses, leading to higher rates of bacterial translocation to lymph nodes.

Article Abstract

Adherence of bacteria to intestinal epithelial cells may be the crucial initiating event for translocation and is normally prevented by both specific (secretory IgA) and nonspecific (mucus, bacterial antagonism, desquamation) mucosal defense mechanisms. The purpose of this study was to examine the effect of dexamethasone administration on mucosal immunity; specifically bacterial adherence and IgA. Twenty Fischer rats were randomly assigned to two groups of 10 animals each. Group I received 0.5 mL saline injection intraperitoneally (IP); and group II, 0.8 mg/150 g body weight dexamethasone IP per day for 2 consecutive days. The cecum mesenteric lymph nodes, and bile were aseptically collected, and bacterial adherence, bacterial translocation, and IgA concentration were determined. Results indicate that, compared with saline-treated animals, dexamethasone-treated animals had a fall in IgA (54 +/- 24 versus 232 +/- 41 micrograms/mg protein), an increase in bacterial adherence (8.2 +/- 0.5 versus 3.4 +/- 0.6 cfu (log10)/g cecum), and an increased incidence of bacterial translocation to the mesenteric lymph nodes (60% versus 0%). These data suggest that glucocorticoids may promote bacterial translocation by impairment of mucosal IgA synthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1358497PMC
http://dx.doi.org/10.1097/00000658-199112000-00012DOI Listing

Publication Analysis

Top Keywords

bacterial translocation
16
bacterial adherence
12
bacterial
8
mesenteric lymph
8
lymph nodes
8
+/- versus
8
translocation
5
iga
5
glucocorticoid administration
4
administration bacterial
4

Similar Publications

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Background And Aims: Protein tyrosine phosphatase non-receptor type 23 (PTPN23) regulates the internalization of growth factor receptors such as the epithelial growth factor receptor (EGFR). Given the crucial function of such receptors in intestinal epithelial cells (IECs), we assessed the involvement of PTPN23 in intestinal homeostasis and epithelial proliferation.

Methods: We generated mouse models with constitutive (PTPN23fl/flVilCre+/-) or inducible (PTPN23fl/flVilCreERT+/-) deletion of PTPN23 in IEC.

View Article and Find Full Text PDF

Introduction: Acute kidney injury (AKI) is a frequent complication of chronic liver disease (CLD) contributing to high morbidity and mortality worldwide. While liver transplantation (LT) has shown favorable outcomes, early identification and management of AKI is imperative for survival. This review aims to highlight the epidemiology, pathophysiology, management, and prognosis of AKI in CLD.

View Article and Find Full Text PDF

Aim: This study was dedicated to investigating the role of sulfur metabolic processes in sulfate-reducing bacteria in plant resistance to heavy metal contamination.

Methods And Results: We constructed sulfate-reducing bacterial communities based on the functional properties of sulfate-reducing strains, and then screened out the most effective sulfate-reducing bacterial community SYN1, that prevented Cd and Pb uptake in rice through hydroponic experiment. This community lowered Cd levels in the roots and upper roots by 36.

View Article and Find Full Text PDF

Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!