The inhibitory effects of selected phenolic lichen substances were tested against a panel of methicillin- and multidrug-resistant Staphylococcus aureus. Depsidones with long alkyl chains on both of the aromatic rings were consistently active against the strains tested, comparable to or better than the level of clinically used antibacterial drugs. A similar level of activity was also observed for rhizocarpic acid. The previously described cytotoxic pentacyclic compound hybocarpone was by far the most active, exhibiting minimum inhibitory concentrations (MICs) of 4-8 microg/mL (8.13-16.3 microM) against a range of multidrug efflux pump expressing strains of S. aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-2006-957070DOI Listing

Publication Analysis

Top Keywords

methicillin- multidrug-resistant
8
multidrug-resistant staphylococcus
8
staphylococcus aureus
8
inhibitory activities
4
activities lichen-derived
4
lichen-derived compounds
4
compounds methicillin-
4
aureus inhibitory
4
inhibitory effects
4
effects selected
4

Similar Publications

Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.

View Article and Find Full Text PDF

Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis.

Probiotics Antimicrob Proteins

January 2025

Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Modular Engineering of Lysostaphin with Significantly Improved Stability and Bioavailability for Treating MRSA Infections.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Methicillin-resistant (MRSA) is a refractory pneumonia-causing pathogen due to the antibiotic resistance and the characteristics of persisting inside its host cell. Lysostaphin is a typical bacteriolytic enzyme for degrading bacterial cell walls via hydrolysis of pentaglycine cross-links, showing potential to combat multidrug-resistant bacteria. However, there are still grand challenges for native lysostaphin because of its poor shelf stability and limited bioavailability.

View Article and Find Full Text PDF

Introduction-Aim: Spontaneous bacterial peritonitis (SBP) is a common complication in cirrhotic patients and is associated with a high mortality rate. The aim of this study is to determine the epidemiological and bacteriological profile of spontaneous bacterial peritonitis, as well as antibiotic resistance among hospitalized patients at CHU Mohammed VI, in order to guide empirical antibiotic choices for better management. Methods: This is a prospective study conducted over a period of 12 months, from January to December 2023, focusing on all requests for bacteriological examination of ascitic fluid samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!