Netherton syndrome: mutation analysis of two Taiwanese families.

Arch Dermatol Res

Division of Genetics and Metabolism, Departments of Pediatrics and Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.

Published: June 2007

Netherton syndrome (NS) is a severe autosomal recessive skin disorder characterized by congenital ichthyosiform erythroderma, hair shaft abnormalities, and atopic diathesis. Recently, pathogenic mutations were identified in serine protease inhibitor Kazal-type 5 (SPINK5), the gene that encodes lympho-epithelial Kazal-type related inhibitor (LEKTI), a type of serine protease inhibitor involved in the regulation of skin barrier formation and immunity. In the present report, we describe the mutation analysis of two Taiwanese patients with NS. Patient 1 has heterozygous mutations; the maternal allele has novel T808I (C-T transition in codon 808) and the paternal allele has recurrent R790X (C-T transition in codon 790). Patient 2 is homozygous for a novel polymorphism R267Q (G-A transition in codon 267). The change was not detected in the patient's father. Haplotype analysis revealed that the patient was homozygous for the 5 single nucleotide polymorphisms in the genomic sequence of SPINK5 as well as the flanking (GT)(17) and D5S413, in addition to the discrepancy of R267Q. Nevertheless real-time quantitative PCR analysis revealed no microdeletion in the genomic sequence of SPINK5. Thus uniparental disomy of maternal SPINK5 allele was indicated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-007-0751-zDOI Listing

Publication Analysis

Top Keywords

transition codon
12
netherton syndrome
8
mutation analysis
8
analysis taiwanese
8
serine protease
8
protease inhibitor
8
c-t transition
8
patient homozygous
8
analysis revealed
8
genomic sequence
8

Similar Publications

Biomolecular condensates formed via phase separation of proteins and nucleic acids are crucial for the spatiotemporal regulation of a diverse array of essential cellular functions and the maintenance of cellular homeostasis. However, aberrant liquid-to-solid phase transitions of such condensates are associated with several fatal human diseases. Such dynamic membraneless compartments can contain a range of molecular chaperones that can regulate the phase behavior of proteins involved in the formation of these biological condensates.

View Article and Find Full Text PDF

Evaluation of a next generation sequencing assay for Hepatitis B antiviral drug resistance on the oxford nanopore system.

J Clin Virol

January 2025

Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

Background: Next-generation sequencing (NGS) for Hepatitis B virus (HBV) antiviral resistance (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance testing, with regards to sequencing accuracy and turn-around time.

View Article and Find Full Text PDF

Structural characterization of codon 129 polymorphism in prion peptide segments (PrP127-132) using the Markov State Models.

J Mol Graph Model

March 2025

Department of Chemistry, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.

The human prion protein gene (PRNP) consists of two common alleles that encode either methionine or valine residues at codon 129. Polymorphism at codon 129 of the prion protein (PRNP) gene is closely associated with genetic variations and susceptibility to specific variants of prion diseases. The presence of these different alleles, known as the PRNP codon 129 polymorphism, plays a significant role in disease susceptibility and progression.

View Article and Find Full Text PDF

Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well-characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG → TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers.

View Article and Find Full Text PDF

Treatment effects of elexacaftor/tezacaftor/ivacaftor on people with cystic fibrosis heterozygous for 3849+10kbC->T and a class I variant.

J Cyst Fibros

December 2024

Pulmonology Institute and Adult CF Center, Rabin Medical Center, Petach Tikva, Israel; School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Background: The splice variant 3849+10kbC->T (c.3717+12191C>T) (3849 variant) is a residual function CFTR variant, characterized by insertion of an in-frame stop codon into most CFTR transcripts. Both ivacaftor (Iva) and tezacaftor/ivacaftor (Tez/Iva) have been approved for people with CF (pwCF) carrying the 3849 variant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!