Purpose Of Review: Integrin alphaIIbbeta3 activation is essential for platelet aggregation and related hemostatic events. In recent years, intense effort has been put forward to understand the molecular mechanisms regulating platelet integrin alphaIIbbeta3 activation. Here we review the current models of alphaIIbbeta3 activation and highlight the potential regulatory roles of proteins that interact directly with the alphaIIbbeta3 cytoplasmic domains, with emphasis on the alphaIIb cytoplasmic domain binding protein, CIB1.
Recent Findings: Mutational and crystallographic studies reveal the importance of integrin transmembrane and cytoplasmic domains in propagating bidirectional signaling events. Proteins that interact directly with the integrin cytoplasmic domains may play important roles in mediating these signaling events. Of particular interest is the interaction between CIB1 and the alphaIIb tail which may function to negatively regulate alphaIIbbeta3 activation. In addition, a number of CIB1 interacting proteins have been identified, including p21-activated kinase and serum-inducible kinase, which may act in concert with CIB1 to regulate platelet function.
Summary: Understanding the molecular mechanisms underlying integrin activation will be important in developing novel therapies to regulate platelet function in cardiovascular disease. Discussion of recent developments in elucidating the mechanism of integrin activation, with particular focus on the platelet integrin alphaIIbbeta3, is provided in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MOH.0b013e3280dce543 | DOI Listing |
HIV Res Clin Pract
December 2025
National Heart and Lung Institute, Imperial College London, London, UK.
Introduction: The BIC-T&T study aimed to determine the efficacy of bictegraviremtricitabine/tenofovir alafenamide (BIC/F/TAF) and darunavir/cobicistat/emtricitabinetenofovir alafenamide (DRV/c/F/TAF) at suppressing viral load in a two-arm, open-label, multi-centre, randomised trial under a UK test-and-treat setting. This sub-study aimed to evaluate potential off-target cardiovascular impact by examining platelet function.
Methods: Platelets were isolated by centrifugation of citrated blood from participants attending Chelsea and Westminster Hospital or St Mary's Hospital at Week 48 following enrolment.
J Thromb Haemost
December 2024
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil. Electronic address:
Background: Although rare, vaccine-induced thrombotic thrombocytopenia (VITT) following adenoviral vector COVID-19 vaccination is a concerning and often severe adverse effect of vaccination. The generation of high anti-platelet factor 4 (PF4) antibody titers, promotes the formation of immune complexes capable of activating platelets and neutrophils through FcγRIIa.
Objective: Given that Platelet-leukocyte aggregate (PLA) formation and inflammasome activation are common features of thromboinflammatory diseases, we aimed to evaluate if these are also features of VITT.
Cell Signal
December 2024
UCD School of Medicine, UCD Conway Institute, University College Dublin, Dublin 4, Belfield, Ireland; Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland. Electronic address:
Hypochlorous acid (HOCl), made by neutrophil-derived myeloperoxidase, has been suggested to inhibit platelets, however, the mechanisms involved have not been described. Here we confirm that HOCl exposure changes platelet morphology and inhibits platelet spreading and aggregation. HOCl effects could be reversed by glutathione suggesting a role for cysteine oxidation.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
December 2024
Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
Exp Hematol
November 2024
Department of Biology, University of York, Heslington, York, United Kingdom; York Biomedical Research Institute, University of York, Heslington, York, United Kingdom. Electronic address:
Schistosomiasis afflicts >250 million people worldwide, leading to an annual loss of >3 million disability-adjusted life years. Schistosoma mansoni causes intestinal schistosomiasis with parasite eggs either transversing intestinal tissue or lodging within the liver and other organs, causing intestinal hemorrhage and liver pathology. Large (∼1 cm) adult worms survive for years within blood vessels, but we lack a clear understanding of their impact on hemostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!