Objectives: This paper describes our work in developing techniques and devices for magnetic resonance (MR)-guided high-intensity ultrasound ablation of the prostate and includes review of relevant literature.

Methods: Catheter-based high-intensity ultrasound applicators, in interstitial and transurethral configurations, were developed to be used under MR guidance. Magnetic resonance thermometry and the relevant characteristics and artifacts were evaluated during in vivo thermal ablation of the prostate in 10 animals. Contrast-enhanced MR imaging (MRI) and diffusion-weighted MRI were used to assess tissue damage and compared with histology.

Results: During evaluation of these applicators, MR thermometry was used to monitor the temperature distributions in the prostate in real time. Magnetic resonance-derived maximum temperature thresholds of 52 degrees C and thermal dose thresholds of 240 minutes were used to control the extent of treatment and qualitatively correlated well with posttreatment imaging studies and histology. The directional transurethral devices are selective in their ability to target well-defined regions of the prostate gland and can be rotated in discrete steps to conform treatment to prescribed boundaries. The curvilinear applicator is the most precise of these directional techniques. Multisectored transurethral applicators, with dynamic angular control of heating and no rotation requirements, offer a fast and less complex means of treatment with less selective contouring.

Conclusions: The catheter-based ultrasound devices can produce spatially selective regions of thermal destruction in prostate. The MR thermal imaging and thermal dose maps, obtained in multiple slices through the target volume, are useful for controlling therapy delivery (rotation, power levels, duration). Contrast-enhanced T1-weighted MRI and diffusion-weighted imaging are useful tools for assessing treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RMR.0b013e31803774ddDOI Listing

Publication Analysis

Top Keywords

high-intensity ultrasound
12
ablation prostate
12
ultrasound ablation
8
magnetic resonance
8
mri diffusion-weighted
8
thermal dose
8
prostate
6
thermal
5
magnetic
4
magnetic resonance-guided
4

Similar Publications

To establish a multivariate linear regression model for predicting the difficulty of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids based on multi-sequence magnetic resonance imaging radiomics features. A retrospective analysis was conducted on 218 patients with uterine fibroids who underwent HIFU treatment, including 178 cases from Yongchuan Hospital of Chongqing Medical University and 40 cases from the Second Affiliated Hospital of Chongqing Medical University (external validation set). Radiomics features were extracted and selected from magnetic resonance images, and potentially related imaging features were collected.

View Article and Find Full Text PDF

Effect of ultrasound-assisted phosphates treatment on solubilization and stable dispersion of rabbit Myofibrillar proteins at low ionic strength.

Food Chem

January 2025

College of Food and Bioengineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China; School of Future Food Modern Industry, Xihua University, Chengdu 610039, China. Electronic address:

The effects of high-intensity ultrasound (HIU) on the dispersibility of myofibrillar proteins (MPs) in low-salt medium were investigated. HIU-assisted STPP or TSPP could sharply improve the solubility and dispersibility of MPs (from 38.12 % to 94.

View Article and Find Full Text PDF

High-intensity focused ultrasound ablation to increase tumor-specific lymphocytes in prostate cancer.

Transl Oncol

January 2025

Department of Urology, Cedars Sinai Medical Center, 8635 W. Third St, 1070, Los Angeles, CA 90048, United States. Electronic address:

Treatment options for localized prostate cancer have been expanded by FDA-approval of High-Intensity Focused Ultrasound (HIFU). Prostate cancer typically has few tumor-infiltrating lymphocytes, which are crucial for antitumor immunity. This study investigated the use of HIFU to increase lymphocyte infiltration into the tumor and enhance antitumor immunity.

View Article and Find Full Text PDF

Background/objectives: Effectively targeting treatment-resistant tumor cells, particularly cancer stem cells (CSCs) involved in tumor recurrence, remains a major challenge in immunotherapy. This study examines the potential of combining mechanical high-intensity focused ultrasound (M-HIFU) with dendritic cell (DC) vaccines to enhance immune responses against OLFM4-expressing tumors, a CSC marker linked to immune evasion and tumor growth.

Methods: M-HIFU was applied to induce immunogenic cell death by mechanically disrupting tumor cells, releasing tumor-associated antigens and creating an immunostimulatory environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!