The rat 9L gliosarcoma is a widely used syngeneic rat brain tumor model that closely simulates glioblastoma multiforme when implanted in vivo. In this study, we sought to isolate and characterize a subgroup of cancer stem-like cells (CSLCs) from the 9L gliosarcoma cell line, which may represent the tumor-initiating subpopulation of cells. We demonstrate that these CSLCs form clonal-derived spheres in media devoid of serum supplemented with the mitogens epidermal growth factor and basic fibroblast growth factor, express the NSC markers Nestin and Sox2, self-renew, and differentiate into neuron-like and glial cells in vitro. More importantly, these cells can propagate and recapitulate tumors when implanted into the brain of syngeneic Fisher rats, and they display a more aggressive course compared with 9L gliosarcoma cells grown in monolayer cultures devoid of mitogens. Furthermore, we compare the chemosensitivity and proliferation rate of 9L gliosarcoma cells grown as a monolayer to those of cells grown as floating spheres and show that the sphere-generated cells have a lower proliferation rate, are more chemoresistant, and express several antiapoptosis and drug-related genes, which may prove to have important clinical implications. Disclosure of potential conflicts of interest is found at the end of this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1634/stemcells.2006-0624 | DOI Listing |
Regen Ther
June 2024
Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden.
Introduction: Before performing cell therapy clinical trials, it is important to understand how cells are influenced by different growth conditions and to find optimal xeno-free medium formulations. In this study we have investigated the properties of adipose tissue-derived stem cells (ASCs) cultured under xeno-free conditions.
Methods: Human lipoaspirate samples were digested to yield the stromal vascular fraction cells which were then seeded in i) Minimum Essential Medium-α (MEM-α) supplemented with 10 % (v/v) fetal bovine serum (FBS), ii) MEM-α supplemented with 2 % (v/v) human platelet lysate (PLT) or iii) PRIME-XV MSC expansion XSFM xeno-free, serum free medium (XV).
Food Funct
January 2025
Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
Dietary consumption of green asparagus has been associated with several health benefits. These beneficial properties are attributed to the presence of many bioactive compounds in asparagus, including saponins, phenolics, flavonoids, as well as dietary fiber mostly comprising fructans and inulins, which are prebiotics capable of supporting the growth of beneficial members of gut microbiota. In this study, we used the Human Gut Simulator system to assess the fermentation of oro-gastro-intestinally digested asparagus powder by the human gut microbiota.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt.
Chicory species, particularly Cichorium endive Supp. Pumillum, also, known as Egyptian chicory, are globally recognized for their rich content of bioactive secondary metabolites such as flavonoids and phenolics. These metabolites are highly valued for their pharmaceutical, dietary, and commercial applications.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland.
Carrot callus grown on a medium with increased nitrogen have reduced carotenoid accumulation, changed gene expression, high amount of vesicular plastids and altered cell wall composition. Carotenoid biosynthesis is vital for plant development and quality, yet its regulation under varying nutrient conditions remains unclear. To explore the effects of nitrogen (N) availability, we used carrot (Daucus carota L.
View Article and Find Full Text PDFNature
January 2025
Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!