The hypothalamic neurocircuitry that regulates energy homeostasis in adult rats is not fully developed until the third postnatal week. In particular, fibers from the hypothalamic arcuate nucleus, including both neuropeptide Y (NPY) and alpha-MSH fibers, do not begin to innervate downstream hypothalamic targets until the second postnatal week. However, alpha-MSH fibers from the brainstem and melanocortin receptors are present in the hypothalamus at birth. The present study investigated the melanocortin system in the early postnatal period by examining effects of the melanocortin receptor agonist melanotan II (MTII) on body weight, energy expenditure, and hypothalamic NPY expression. Rat pups were injected ip with MTII (3 mg/kg body weight) or saline on postnatal day (P) 5 to P6, P10-P11, or P15-P16 at 1700 and 0900 h and then killed at 1300 h. Stomach weight and brown adipose tissue uncoupling protein 1 mRNA were determined. In addition, we assessed central c-Fos activation 90 min after MTII administration and hypothalamic NPY mRNA after twice daily MTII administration from P5-P10 or P10-P15. MTII induced hypothalamic c-Fos activation as well as attenuating body weight gain in rat pups. Stomach weight was significantly decreased and uncoupling protein 1 mRNA was increased at all ages, indicating decreased food intake and increased energy expenditure, respectively. However, MTII had no effect on NPY mRNA levels in any hypothalamic region. These findings demonstrate that MTII can inhibit food intake and stimulate energy expenditure before the full development of hypothalamic feeding neurocircuitry. These effects do not appear to be mediated by changes in NPY expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2007-0184 | DOI Listing |
Toxicol Lett
January 2025
China Institute of Sport Science, 11 Tiyuguan Road, Dongcheng District, Beijing 100061, PR China.
The prevalence of obesity-associated kidney injury has increased, yet the precise extent of the injury and its underlying mechanisms remain unclear. This study used a Sprague-Dawley (SD) rat model to simulate human exposure scenarios, with the objective of investigating the involvement of mitochondria in obesity-induced renal toxicity. Biochemical analysis revealed significant increases in serum creatinine, cystatin C, urinary protein, urinary microalbumin, and urinary α1-microglobulin levels in rats fed a high-fat diet, indicating a notable decline in glomerular filtration function.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Bacterial artificial chromosome transgenic models, including most Cre-recombinases, enable potent interrogation of gene function in vivo but require rigorous validation as limitations emerge. Due to its high relevance to metabolic studies, we perform comprehensive analysis of the Ucp1-Cre line which is widely used for brown fat research. Hemizygotes exhibit major brown and white fat transcriptomic dysregulation, indicating potential altered tissue function.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain; Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFIntroduction: It has been reported that even with the same body mass index (BMI), there are subjects with metabolically healthy or unhealthy phenotype. The main determinants of the unhealthy phenotype are the type and distribution of fat, ectopic fat accumulation, genetics, and lifestyle factors. Uncoupling proteins (UCPs) disengage mitochondrial respiration from ATP synthesis and result in heat production, which in turn is related to energy expenditure and, thus, to fat mass accumulation.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, UK.
Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!