These experiments assessed whether the impairment in proprioceptive acuity in the hand during 'interfering' cutaneous stimulation could be caused by inputs from Pacinian corpuscles. The ability to detect passive movements at the proximal interphalangeal joint of the index finger was measured when vibrotactile stimuli were applied to the adjacent middle finger and thenar eminence at frequencies and amplitudes that favour activation of rapidly adapting cutaneous afferents. Inputs from Pacinian corpuscles are favoured with high-frequency vibration (300 Hz), while those from Meissner corpuscles are favoured by lower frequencies (30 Hz). Detection of movement was significantly impaired when 300 Hz (20 microm peak-to-peak amplitude) complex vibration or 300 Hz (50 microm) sinusoidal vibration was applied to the middle finger and thenar eminence. In contrast, detection of movements was not altered by low-frequency sinusoidal vibration at 30 Hz with an amplitude of 50 microm or with a larger amplitude matched in subjective intensity to the 300 Hz sinusoidal stimulus. Thus it is unlikely that the impairment in detection was due to attention being diverted by vibration of an adjacent digit. In addition, an increase in amplitude of 300 Hz vibration led to a greater impairment of movement detection, so that the impairment was graded with the input. The time taken to nominate the direction of applied movement also increased during 300 Hz but not during 30 Hz sinusoidal vibration. These findings suggest that stimuli which preferentially activate Pacinian, but not Meissner corpuscles, impair proprioceptive acuity in a movement detection task.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2170847 | PMC |
http://dx.doi.org/10.1113/jphysiol.2006.126854 | DOI Listing |
Sensors (Basel)
December 2024
School of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China.
Permanent magnet synchronous motors (PMSMs) are widely used in a variety of fields such as aviation, aerospace, marine, and industry due to their high angular position accuracy, energy conversion efficiency, and fast response. However, driving errors caused by the non-ideal characteristics of the driver negatively affect motor control accuracy. Compensating for the errors arising from the non-ideal characteristics of the driver demonstrates substantial practical value in enhancing control accuracy, improving dynamic performance, minimizing vibration and noise, optimizing energy efficiency, and bolstering system robustness.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Mechanical Engineering, Cracow University of Technology, 31-155 Cracow, Poland.
This study investigates the dynamic stiffness and damping characteristics of three polyurethane materials-PM, PS, and PST-using a comprehensive vibroacoustic testing approach. The aim is to examine material parameters such as dynamic stiffness, Young's modulus, critical damping factor, and the influence of sample irregularities on the accuracy of measurements. The study employs both experimental testing, in which cuboidal and cylindrical polyurethane samples were subjected to sinusoidal excitation, and finite element modeling (FEM) to simulate the test conditions in sample without irregularities.
View Article and Find Full Text PDFISA Trans
November 2024
National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Mechanical Building, 1037 Luoyu Road, Wuhan 430074, China. Electronic address:
The vibration signal of the spindle motor contains complicated mixed modulation harmonics and background noise when computer numerical control (CNC) machine tools perform machining tasks. Additionally, frequent changes in the running speed of the spindle motor cause significant variations in the signal feature distribution, making fault diagnosis challenging. The adaptive sinusoidal fusion convolutional neural networks (ASFCNN) is proposed to achieve cross-speed spindle motor bearings fault diagnosis.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
December 2024
School of Mechanical Engineering, Shandong University of Technology, Zibo, China.
Objective: To investigate the impact of tension and laxity in the sacroiliac interosseous ligament on lumbar spine displacement and force response in vibration environments.
Methods: A finite element model of the lumbar-pelvis, previously crafted and rigorously validated, was used to simulate ligament tension and laxity by adjusting the elastic modulus of the SIL under a sinusoidal vertical load of ±40 N at 5 Hz. Comparisons of lumbar spine horizontal and axial displacements as well as annulus fibrous stress, nucleus pulposus pressure, and facet joint force were performed, respectively.
Sci Rep
November 2024
School of Biomedical Sciences, UNSW Sydney, Sydney, Australia.
Among the various classes of fast-adapting (FA) tactile afferents found in hairy and glabrous skin, FA2 afferents, associated with Pacinian corpuscles (PC), preferentially signal high-frequency sinusoidal events corresponding with vibration percepts, in contrast to other classes associated with lower frequency flutter percepts. The FA2-PC complex is also uniquely sensitive to distant sources of vibration mechanically transmitted through anatomical structures. In the present study, we used a pulsatile waveform to assess the contribution of FA2 afferents to the perception of flutter-range frequency stimuli (~ 20 Hz) in combination with two methods to abolish local FA inputs and force a dependence on FA2 via transmission from adjacent structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!