A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Estrogen esters as substrates for human paraoxonases. | LitMetric

Estrogen esters as substrates for human paraoxonases.

Arch Biochem Biophys

Department of Internal Medicine, Division of Epidemiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Published: May 2007

Mammalian paraoxonases (PONs 1, 2 and 3) are a highly conserved family of esterases, with uncertain physiological functions and natural substrates. Here we characterize the ability of purified recombinant human PONs to hydrolyze estrogen esters, a class of compounds previously not known to be PON substrates. PONs hydrolyzed estrogen mono- and diesters at position 3 of the steroid A-ring. Diesters were better substrates for the PONs and were very efficiently hydrolyzed, particularly by PON3. Esters at position 17 were not cleaved by the PONs unless an adjacent double bound was present. Purified human serum butyryl cholinesterase also hydrolyzed estrogen esters, however it preferably hydrolyzed the mono-esters. The ability of the PONs' to effectively hydrolyze a variety of estrogen esters provides further insight into the structure of their active sites and suggests that natural compounds with aromatic ester groups might be relevant substrates for the PONs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2007.02.015DOI Listing

Publication Analysis

Top Keywords

estrogen esters
16
substrates pons
12
hydrolyzed estrogen
8
pons
6
estrogen
5
substrates
5
esters substrates
4
substrates human
4
human paraoxonases
4
paraoxonases mammalian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!