Multipole shimming of permanent magnets using harmonic corrector rings.

Rev Sci Instrum

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Published: March 2007

Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2713438DOI Listing

Publication Analysis

Top Keywords

harmonic corrector
8
corrector rings
8
shimming systems
8
shimming method
8
order shimming
8
order magnitude
8
shimming
6
order
5
multipole shimming
4
shimming permanent
4

Similar Publications

Mutations in creatine transporter SLC6A8 cause creatine transporter deficiency (CTD), which is responsible for 2% of all cases of X-linked intellectual disability. CTD has no current treatments and has a high unmet medical need. Inspired by the transformational therapeutic impact of small molecule "correctors" for the treatment of cystic fibrosis, which bind to mutated versions of the CFTR ion channel to promote its trafficking to the cell surface, we sought to identify small molecules that could stabilize SLC6A8 as a potential treatment for CTD.

View Article and Find Full Text PDF

A dSPACE-based implementation of ANFIS and predictive current control for a single phase boost power factor corrector.

Sci Rep

June 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Peremogy, 56, Kyiv-57, 03680, Ukraine.

This paper presents an innovative control scheme designed to significantly enhance the power factor of AC/DC boost rectifiers by integrating an adaptive neuro-fuzzy inference system (ANFIS) with predictive current control. The innovative control strategy addresses key challenges in power quality and energy efficiency, demonstrating exceptional performance under diverse operating conditions. Through rigorous simulation, the proposed system achieves precise input current shaping, resulting in a remarkably low total harmonic distortion (THD) of 3.

View Article and Find Full Text PDF

Large diameter, high-harmonic diffractive lenses could find applications in future space telescopes. Residual chromatic aberrations from these lenses can cause significant blurring. Solutions to reduce chromatic dispersion and other aberrations to diffraction-limited performance are discussed.

View Article and Find Full Text PDF

The ability to tune the localized surface plasmon resonance (LSPR) of nanostructures is desirable for surface enhanced Raman spectroscopy (SERS), plasmon-assisted chemistry and other nanophotonic applications. Although historically the LSPR is mainly studied by optical techniques, with the recent advancement in electron monochromators and correctors, it has attracted considerable attention in transmission electron microscopy (TEM). Here, we use electron energy loss spectroscopy (EELS) in a scanning TEM to study individual gold nanodiscs and bowties in lithographic arrays with variable LSPRs by adjusting the size, interspacing, shape and dielectric environment during the nanofabrication process.

View Article and Find Full Text PDF

Multi-Tone Frequency Estimation Based on the All-Phase Discrete Fourier Transform and Chinese Remainder Theorem.

Sensors (Basel)

September 2020

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

The closed-form robust Chinese Remainder Theorem (CRT) is a powerful approach to achieve single-frequency estimation from noisy undersampled waveforms. However, the difficulty of CRT-based methods' extension into the multi-tone case lies in the fact it is complicated to explore the mapping relationship between an individual tone and its corresponding remainders. This work deals with this intractable issue by means of decomposing the desired multi-tone estimator into several single-tone estimators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!