Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films.

J Am Chem Soc

Department of Chemistry and Biochemistry, Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, USA.

Published: May 2007

The gas sensing behaviors of cobalt phthalocyanine (CoPc) and metal-free phthalocyanine (H2Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors were fabricated by deposition of 50 nm thick films on interdigitated gold electrodes via organic molecular beam epitaxy (OMBE). Time-dependent current responses of the films were measured at constant voltage during exposure to analyte vapor doses. The analytes spanned a range of electron donor and hydrogen-bonding strengths. It was found that, when the analyte exceeded a critical base strength, the device responses for CoPc correlated with Lewis basicity, and device responses for H2Pc correlated with hydrogen-bond basicity. This suggests that the analyte-phthalocyanine interaction is dominated by binding to the central cavity of the phthalocyanine with analyte coordination strength governing CoPc sensor responses and analyte hydrogen-bonding ability governing H2Pc sensor responses. The interactions between the phthalocyanine films and analytes were found to follow first-order kinetics. The influence of O2 on the film response was found to significantly affect sensor response and recovery. The increase of resistance generally observed for analyte binding can be attributed to hole destruction in the semiconductor film by oxygen displacement, as well as hole trapping by electron donor ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0689379DOI Listing

Publication Analysis

Top Keywords

gas sensing
8
metal-free phthalocyanine
8
thin films
8
electron donor
8
device responses
8
sensor responses
8
analyte
6
phthalocyanine
5
films
5
responses
5

Similar Publications

A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.

View Article and Find Full Text PDF

Machine-learning for discovery of descriptors for gas-sensing: A case study of doped metal oxides.

Talanta

January 2025

Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China. Electronic address:

Conventionally, gas sensors are studied based on functional materials, case by case, using experimental methods. In this study, 872 datasets with 34 features of doped oxides, extracted from the literature, were used to analyze the key features of gas-sensing reactions and understand gas-sensing mechanisms from a global perspective using a genetic algorithm-optimized artificial neural network. Shapley additive explanations were employed to determine the importance and relationships of the features.

View Article and Find Full Text PDF

Annealing plays a crucial role for in enhancing the gas sensing properties of MOF-derived TiO (MIL-125). Generally, TiO transforms into different polymorphs (anatase, rutile, and brookite) during annealing, each with unique crystal structures and gas sensing properties. The aim of this research was to investigate the impact of annealing (500-650 °C) on the properties of MIL-125, which had not been previously studied.

View Article and Find Full Text PDF

CO Adsorption on a Single-Atom Catalyst Stably Embedded in Graphene.

Angew Chem Int Ed Engl

January 2025

Università di Milano-Bicocca, Dipartimento di Scienza dei Materiali, via Cozzi 55, 20125, Milano, ITALY.

Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear. In this work, through a combined density functional theory and experimental surface science study, we address this question by investigating Co and Ni single atoms embedded in graphene (Gr) on a Ni(111) support.

View Article and Find Full Text PDF

Parosmia: Pathophysiology and Management.

Curr Allergy Asthma Rep

January 2025

Smell and Taste Clinic, Department of Otorhinolaryngology, Technical University of Dresden, Dresden, Germany.

Purpose Of Review: Parosmia is a qualitative olfactory disorder in which there is a mismatch between the memory of an odor and the actual experience triggered by an odor. There has been a surge in parosmia-related publications since the COVID-19 pandemic. This review summarizes the latest clinical findings, theories on pathophysiology and potential treatment options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!