Electrochemical oxidation of 2'-deoxyguanosine has been performed on boron-doped diamond (BDD) electrodes, resulting in a strong adsorption of the formed oxidized products onto the BDD surface. The adsorption behavior has been investigated by studying the electrochemical behavior of a redox probe ([IrCl6]3-) using cyclic voltammetry. The most probable situations are the formation of (A) an insulating adsorbed film resulting in a partially blocked electrode behavior, (B) a porous film, or (C) an overall conductive film. Different parameters such as the standard rate constant, the charge-transfer coefficient, the electrode/adsorbed products/solution interface resistance, and the formal potential of the redox couple were determined. Through comparison of theoretical current-potential curves obtained by analytical calculations with experimental cyclic voltammograms, we found that the oxidized products of 2'-deoxyguanosine form a continuous conductive film on BDD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac061765d | DOI Listing |
Materials (Basel)
January 2025
Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.
The n-TiO nanoballs-sticks (TiO NBSs) were successfully deposited on p-lightly boron-doped diamond (LBDD) substrates by the hydrothermal method. The temperature-dependent optoelectronic properties and carrier transport behavior of the n-TiO NBS/p-LBDD heterojunction were investigated. The photoluminescence (PL) of the heterojunction detected four distinct emission peaks at 402 nm, 410 nm, 429 nm, and 456 nm that have the potential to be applied in white-green light-emitting devices.
View Article and Find Full Text PDFSci Rep
January 2025
FEMTO-ST Institute (UMR CNRS 6174), UBFC/UTBM. Site de Montbéliard, 90010, Belfort, France.
Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Universidade Federal da Paraíba, Departamento de Química, 58051-970 João Pessoa, Paraíba, Brasil. Electronic address:
Recently, the National Health Surveillance Agency (ANVISA) of Brazil recalled several lots of sartan drugs due to the presence of N-nitrosodimethylamine (NDMA). NDMA is a highly potent carcinogenic contaminant that harms human health; therefore, the presence of NDMA in sartan drugs must be checked through appropriate analytical methods. This work successfully developed a new analytical method for determining NDMA without chemical pretreatment of losartan and olmesartan drug samples.
View Article and Find Full Text PDFChemSusChem
January 2025
Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.
A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.
Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!