Midazolam (MDZ), a short-acting benzodiazepine, is a widely accepted probe drug for CYP3A phenotyping. Published methods for its analysis have used either therapeutic doses of MDZ, or, if employing lower doses, were mostly unable to quantify the two hydroxy metabolites. In the present study, a sensitive and specific liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantitative determination of MDZ and two of its metabolites (1'-hydroxymidazolam (1'-OHMDZ) and 4-hydroxymidazolam (4-OHMDZ)) in human plasma and oral fluid. After liquid-liquid extraction with hexane/dichloromethane (73:27, v/v), the analytes were separated on a Luna C18(2) (100 x 2.1 mm) analytical column using gradient elution. Detection was achieved using tandem mass spectrometry on an ion trap mass spectrometer. Midazolam-d6 was used as internal standard for quantification. The calibration curves were linear (R2 >0.998) between 0.05 and 20 ng/mL for MDZ and both metabolites in both matrices. Using 1 mL samples, the limit of detection was 0.025 ng/mL and the limit of quantification was 0.05 ng/mL for MDZ and the hydroxy metabolites in both matrices. Intra- and inter-day accuracies, determined at three different concentrations, were between 92.1 and 102.3% and the corresponding coefficients of variation were <7.3%. The average recoveries were 90.6%, 86.7% and 79.0% for MDZ, 1'-OHMDZ and 4-OHMDZ in plasma and 95.3%, 96.6% and 86.8% for MDZ, 1'-OHMDZ and 4-OHMDZ, respectively, in oral fluid. The method was successfully applied to a pharmacokinetic study, showing that MDZ and its hydroxy metabolites can be determined precisely in in vivo samples obtained following a single oral or intravenous dose of 2 mg MDZ. The method appears to be useful for CYP3A phenotyping in plasma using sub-therapeutic MDZ doses, but larger studies are needed to test this assumption.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.2987DOI Listing

Publication Analysis

Top Keywords

hydroxy metabolites
12
tandem mass
12
mass spectrometry
12
human plasma
8
plasma oral
8
oral fluid
8
liquid chromatography/electrospray
8
chromatography/electrospray ionization
8
ion trap
8
mdz metabolites
8

Similar Publications

Understanding a small molecule's mode of action (MoA) is essential to guide the selection, optimization and clinical development of lead compounds. In this study, we used high-throughput non-targeted metabolomics to profile changes in 2,269 putative metabolites induced by 1,520 drugs in A549 lung cancer cells. Although only 26% of the drugs inhibited cell growth, 86% caused intracellular metabolic changes, which were largely conserved in two additional cancer cell lines.

View Article and Find Full Text PDF

The existing evidence indicating that prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with a range of adverse outcomes, including alterations in anthropometric indices, underscores the need for further investigation into the underlying mechanisms. This study aims to examine the effects of prenatal PAH exposure on anthropometric indices and telomere length (TL), as well as to explore whether changes in TL can serve as a predictor of alterations in anthropometric measures. The study was conducted in Shenyang, China, with 2460 pregnant women participating between 2022 and 2023.

View Article and Find Full Text PDF

Roughly 90% of the Polish population experiences vitamin D deficiency. The 3-epi-25(OH)D2 and 3-epi-25(OH)D3 are stereoisomers of 25(OH)D2 and 25(OH)D3, and they can inadvertently be included in measurements of 25(OH)D levels, potentially leading to its overestimating. We aimed to measure 25(OH)D2 and 25(OH)D3, their epimers 3-epi-25(OH)D2 and 3-epi-25(OH)D3, and biologically active 1,25(OH)2D3 in patients with cardiovascular disease and healthy volunteers.

View Article and Find Full Text PDF

Bacterial leaf blight (BLB) in rice, caused by the pathogen pv. , is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management.

View Article and Find Full Text PDF

Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics.

Plant Physiol Biochem

January 2025

College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China. Electronic address:

Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!