Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements.

J Biomed Mater Res B Appl Biomater

Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.

Published: November 2007

The development of degradable bone cements with a mineral composition similar to natural bone was investigated using highly reactive calcium phosphate phases as starting materials. Mixtures of XRD-amorphous, glassy tricalcium phosphate (amorphous-TCP) nanoparticles of 25-60 nm size and micron sized, milled alpha-TCP were set by hydration with sodium phosphate buffer and investigated for possible application as single component calcium phosphate cements (CPCs). Isothermal calorimetry allowed a precise tracking of the setting process. Amorphous-TCP nanoparticles converted into calcium deficient hydroxyapatite with cement setting times below 12 min. The total energy release by the material during hardening corroborated the importance of high specific surface area and phase composition, that is, amorphous state of the nanometric starting material as repeatedly suggested earlier. The phase composition of the resulting CPCs was characterized by X-ray diffraction before and after setting. The morphology was investigated by nitrogen adsorption, scanning, and transmission electron microscopy and revealed the formation of highly porous calcium deficient hydroxyapatite with specific surface areas of up to 160 m(2) g(-1) after setting. In contrast to the very fast reaction time and highest specific surface area, the mechanical stability of the resulting CPC is still insufficient and requires further improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30809DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
12
specific surface
12
starting materials
8
phosphate cements
8
amorphous-tcp nanoparticles
8
calcium deficient
8
deficient hydroxyapatite
8
surface area
8
phase composition
8
calcium
5

Similar Publications

Optimization of chemical transfection in airway epithelial cell lines.

BMC Biotechnol

January 2025

Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Healthcare Research Institute, University of British Columbia, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.

Background: Chemical transfection is a widely employed technique in airway epithelium research, enabling the study of gene expression changes and effects. Additionally, it has been explored for its potential application in delivering gene therapies. Here, we characterize the transfection efficiency of EX-EGFP-Lv105, an EGFP-expressing plasmid into three cell lines commonly used to model the airway epithelium (1HAEo-, 16HBE14o-, and NCI-H292).

View Article and Find Full Text PDF

The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.

View Article and Find Full Text PDF

Introduction: Calcium phosphate stones are commonly found in medically complex children (MCC) receiving enteral feeds. The objective of this study is to investigate the etiology for calcium phosphate stones in this patient population.

Study Design: This is a retrospective cohort study of gastrostomy fed, MCC who presented to a high-volume Pediatric Stone Center from 2015 to 2019.

View Article and Find Full Text PDF

[Research progress of bioactive scaffolds in repair and regeneration of osteoporotic bone defects].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi

January 2025

Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China.

Objective: To summarize the research progress of bioactive scaffolds in the repair and regeneration of osteoporotic bone defects.

Methods: Recent literature on bioactive scaffolds for the repair of osteoporotic bone defects was reviewed to summarize various types of bioactive scaffolds and their associated repair methods.

Results: The application of bioactive scaffolds provides a new idea for the repair and regeneration of osteoporotic bone defects.

View Article and Find Full Text PDF

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!