Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters.

J Biomed Mater Res B Appl Biomater

Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, Taipei, Taiwan.

Published: November 2007

Segmented polyurethane (SPU) is commonly used to manufacture urethral catheters. Surface modifications for SPU catheters are needed to reduce friction and protein adsorption, in order to minimize catheter-related complications, including urethral trauma, encrustation, catheter obstruction, bacterial colonization, and infection. In this study, a four-step surface modification method was developed to create a thin lubricious layer of chitosan/poly(vinyl alcohol) (PVA) hydrogel on the SPU catheter. Modification steps included oxidation of the SPU surface, functionalities modification, carbodiimide reaction and coupling, and hydrogel crosslinking. The success of each modification step was confirmed by Fourier transform infrared spectroscopy. Measurement of the water contact angle revealed that hydrogel coating created a highly hydrophilic surface and atomic force microscope analyses demonstrated that the surface was slippery. Protein absorption of the SPU catheter was significantly reduced by coating hydrogel. Chitosan in the hydrogel could provide antimicrobial activity, and the hydrogel coating SPU samples showed significant antibacterial effects in this study. In summary, the four-step modification method developed in this study provided a simple and effective way to coat the surface of SPU catheters with a chitosan/PVA blending hydrogel that could help to minimize the risk of complications related to the use of urethral catheters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30796DOI Listing

Publication Analysis

Top Keywords

hydrogel coating
12
urethral catheters
12
chitosan/polyvinyl alcohol
8
hydrogel
8
blending hydrogel
8
segmented polyurethane
8
spu catheters
8
modification method
8
method developed
8
spu catheter
8

Similar Publications

The medical and cosmetic industries have developed in recent years, there has been a growing demand for new materials. Gold nanoparticles (Au NPs) and chitosan (CS) have been known and used for many years. Unfortunately, despite their numerous advantages and possible applications, such materials may possess certain disadvantages and limitations that constitute a problem in medical or cosmetic applications.

View Article and Find Full Text PDF

An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction.

Regen Biomater

November 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.

View Article and Find Full Text PDF

AB-Type Zwitterionic Hydrogel Paint.

Langmuir

January 2025

School of Chemistry and Life Resources, Renmin University of China, 100872 Beijing, China.

Zwitterionic hydrogels exhibit excellent nonfouling and hemocompatibility. However, the practical application of these materials as antifouling coatings for biomedical devices is hindered by several key challenges, including the harsh preparation conditions and the weak coating stability. Here, we present a two-component zwitterionic hydrogel paint for the in situ preparation of robust zwitterionic hydrogel coatings on various substrate surfaces without UV assistance.

View Article and Find Full Text PDF

Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.

View Article and Find Full Text PDF

This work introduces an ultraviolet (UV)-curable elastomer through the co-polymerization of aliphatic polyurethane acrylate and hydroxypropyl acrylate via UV irradiation. The UV-curable elastomer presents superior mechanical properties (elongation at a break of 2992%) and high transparency (94.8% at 550 nm in the visible light region).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!