Six diarylheptanoids (1-6) from the stem bark of Alnus hirsuta were investigated for their inhibitory activity against LPS-induced NF-kB activation and NO and TNF-alpha production. Among them, compounds 2, 3, and 6 displayed inhibitory activity against NF-kB activation and NO and TNF-alpha production with IC50 values of 9.2-9.9 microM, 18.2-19.3 microM, and 22.3-23.7 microM, respectively, in RAW264.7 cells. Three active compounds had no significant cytotoxicity in RAW264.7 cells at their effective concentrations. This is the first report of NF-kB-inhibitory activity of these compounds and supports the pharmacological use of A. hirsuta, which has been employed as a herbal medicine for the treatment of inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.30.810DOI Listing

Publication Analysis

Top Keywords

nf-kb activation
12
activation tnf-alpha
12
tnf-alpha production
12
alnus hirsuta
8
inhibitory activity
8
raw2647 cells
8
diarylheptanoids alnus
4
hirsuta inhibit
4
inhibit nf-kb
4
production diarylheptanoids
4

Similar Publications

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

The levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Berk Alleviated Atherosclerosis Symptoms via Nuclear Factor-Kappa B-Mediated Inflammatory Response in ApoE Mice.

Nutrients

December 2024

Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.

Background: Atherosclerosis, a persistent inflammatory disease marked by the presence of atherosclerotic plaques or fibrous plaques, is a significant contributor to the onset of the development of cardiovascular disease. Berk contains various active ingredients that have anti-inflammatory, antioxidant, and hypolipidemic properties. Nevertheless, the potential effects of on atherosclerosis have not been systematically reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!