A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface. | LitMetric

Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface.

J Neural Eng

Department of Electronic Engineering, School of Information Engineering, Nanchang University, Nanchang 330031, People's Republic of China.

Published: June 2007

Most of the feature extraction methods in existing brain-computer interfaces (BCIs) are based on the dynamic behavior of separate signals, without using the coupling information between different brain regions. In this paper, amplitude and phase coupling measures, quantified by a nonlinear regressive coefficient and phase locking value respectively, were used for feature extraction. The two measures were based on three different coupling methods determined by neurophysiological a priori knowledge, and applied to a small number of electrodes of interest, leading to six feature vectors for classification. Five subjects participated in an online BCI experiment during which they were asked to imagine a movement of either the left or right hand. The electroencephalographic (EEG) recordings from all subjects were analyzed offline. The averaged classification accuracies of the five subjects ranged from 87.4% to 92.9% for the six feature vectors and the best classification accuracies of the six feature vectors ranged between 84.4% and 99.6% for the five subjects. The performance of coupling features was compared with that of the autoregressive (AR) feature. Results indicated that coupling measures are appropriate methods for feature extraction in BCIs. Furthermore, the combination of coupling and AR feature can effectively improve the classification accuracy due to their complementarities.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2560/4/2/012DOI Listing

Publication Analysis

Top Keywords

feature extraction
16
coupling measures
12
feature vectors
12
feature
9
amplitude phase
8
phase coupling
8
classification accuracies
8
coupling
7
measures
4
measures feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!