Apoptotic mechanisms in mutant LRRK2-mediated cell death.

Hum Mol Genet

Department of Physiological, Biochemical, and Cell Science, University of Sassari, Via Muroni 25, 07100 Sassari,Italy.

Published: June 2007

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinson's disease. The pathological mutations have been associated with an increase of LRRK2 kinase activity, although its physiological substrates have not been identified yet. The data we report here demonstrate that disease-associated mutant LRRK2 cell toxicity is due to mitochondria-dependent apoptosis. Transient transfection of mutant LRRK2 leads to neuronal death with clear apoptotic signs. Soluble caspase inhibitors or the genetic ablation of Apaf1 protects cells from apoptotic death. Moreover, we explored the function of two protein domains in LRRK2 (LRR and WD40) and demonstrate that the lack of these protein domains has a protective effect on mitochondria dysfunctions induced by mutant LRRK2.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddm080DOI Listing

Publication Analysis

Top Keywords

mutant lrrk2
12
protein domains
8
lrrk2
6
apoptotic mechanisms
4
mutant
4
mechanisms mutant
4
mutant lrrk2-mediated
4
lrrk2-mediated cell
4
cell death
4
death mutations
4

Similar Publications

Mutations in leucine-rich repeat kinase 2 () are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.

View Article and Find Full Text PDF

The Parkinson's disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis-Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a K value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell.

View Article and Find Full Text PDF
Article Synopsis
  • Research indicates that SARS-CoV-2 infection can increase the risk of developing parkinsonian symptoms when combined with the mitochondrial toxin MPTP, particularly in genetically modified mice expressing human ACE2 receptors.
  • The study found that while both mRNA and protein-based vaccines can mitigate neurodegeneration in wild-type (WT) mice, only the protein-based vaccine was effective in protecting G2019S LRRK2 mutant mice from SARS-CoV-2 related neurological damage.
  • Overall, the findings emphasize how environmental toxins and genetic predisposition contribute to the development of neurological diseases after viral infections, as well as the potential protective effects of vaccines.
View Article and Find Full Text PDF
Article Synopsis
  • * EAAT2 dysfunction is linked to several neurodegenerative diseases, including Alzheimer's and Parkinson's, with specific mutations in LRRK2, particularly Gly2019Ser, reducing EAAT2 expression.
  • * This study reveals that LRRK2 is essential for the stability and function of EAAT2, suggesting its role in preventing neuronal damage from excessive excitatory signals, but does not affect the function of other NTTs.
View Article and Find Full Text PDF

P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!