Many protein-protein interaction domains bind to multiple targets. However, little is known about how the interactions of a single domain with many proteins are controlled and modulated under varying cellular conditions. In this study, we investigated the in vivo effects of Abp1p SH3 domain mutants that incrementally reduce target-binding affinity in four different yeast mutant backgrounds in which Abp1p activity is essential for growth. Although the severity of the phenotypic defects observed generally increased as binding affinity was reduced, some genetic backgrounds (prk1 Delta and sla1 Delta) tolerated large affinity reductions while others (sac6 Delta and sla2 Delta) were much more sensitive to these reductions. To elucidate the mechanisms behind these observations, we determined that Ark1p is the most important Abp1p SH3 domain interactor in prk1 Delta cells, but that interactions with multiple targets, including Ark1p and Scp1p, are required in the sac6 Delta background. We establish that the Abp1p SH3 domain makes different, functionally important interactions under different genetic conditions, and these changes in function are reflected by changes in the binding affinity requirement of the domain. These data provide the first evidence of biological relevance for any Abp1p SH3 domain-mediated interaction. We also find that considerable reductions in binding affinity are tolerated by the cell with little effect on growth rate, even when the actin cytoskeletal morphology is significantly perturbed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1893037PMC
http://dx.doi.org/10.1534/genetics.106.070300DOI Listing

Publication Analysis

Top Keywords

binding affinity
16
abp1p sh3
16
sh3 domain
12
multiple targets
8
prk1 delta
8
sac6 delta
8
affinity
6
domain
6
delta
6
abp1p
5

Similar Publications

The Stenotrophomonas maltophilia L2 cephalosporinase is one of two beta-lactamases which afford S. maltophilia beta-lactam resistance. With the overuse of beta-lactams, selective pressures have contributed to the evolution of these proteins, generating proteins with an extended spectrum of activity.

View Article and Find Full Text PDF

Post-SELEX modification of quinine aptamers through neoacetalization.

Org Biomol Chem

January 2025

Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.

In this article, a neoacetalization-based method for post-SELEX modification of aptamers is introduced. Three modified quinine binding aptamer scaffolds were synthesized by replacing three different nucleosides of the binding site with a (2,3)-4-(methoxyamino)butane-1,2,3-triol residue. These aptamer scaffolds were incubated in different aldehyde mixtures with and without quinine, allowing the reversible formation of -methoxy-1,3-oxazinane (MOANA) nucleoside analogues through dynamic combinatorial chemistry.

View Article and Find Full Text PDF

Exploring the potential of compound-protein complex structure-free models in virtual screening using BlendNet.

Brief Bioinform

November 2024

Department of Computer Science, Yonsei University, Yonsei-ro 50, Seodaemun-gu, 03722, Seoul, Republic of Korea.

Identifying new compounds that interact with a target is a crucial time-limiting step in the initial phases of drug discovery. Compound-protein complex structure-based affinity prediction models can expedite this process; however, their dependence on high-quality three-dimensional (3D) complex structures limits their practical application. Prediction models that do not require 3D complex structures for binding-affinity estimation offer a theoretically attractive alternative; however, accurately predicting affinity without interaction information presents significant challenges.

View Article and Find Full Text PDF

Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Scale and the Action Mechanism.

J Agric Food Chem

January 2025

College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.

This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.

View Article and Find Full Text PDF

Peptide-Bismuth Tricycles: Maximizing Stability by Constraint.

Chemistry

January 2025

Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.

Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!