Novel hyaluronic acid (HA) nanogels physically encapsulating small interfering RNA (siRNA) were fabricated by an inverse water-in-oil emulsion method. Thiol-conjugated HA dissolved in aqueous emulsion droplets was ultrasonically crosslinked via the formation of disulfide linkages to produce HA nanogels with a size distribution from 200 to 500 nm. Green fluorescence protein (GFP) siRNA was physically entrapped within the HA nanogels during the emulsion/crosslinking process. The HA/siRNA nanogels were readily taken up by HA receptor positive cells (HCT-116 cells) having HA-specific CD44 receptors on the surface. Release rates of siRNA from the HA nanogels could be modulated by changing the concentration of glutathione (GSH) in the buffer solution, indicating that the degradation/erosion of disulfide crosslinked HA nanogels, triggered by an intracellular reductive agent, controlled the release pattern of siRNA. When HA nanogels containing GFP siRNA were co-transfected with GFP plasmid/Lipofectamine to HCT-116 cells, a significant extent of GFP gene silencing was observed in both serum and non-serum conditions. The gene silencing effect was reduced in the presence of free HA in the transfection medium, revealing that HA nanogels were selectively taken up by HCT-116 cells via receptor mediated endocytosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2007.02.011 | DOI Listing |
Sci Rep
January 2025
NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
Identifying novel targets for molecular radiosensitization is critical for improving the efficacy of colorectal cancer (CRC) radiotherapy. Alpha-thalassemia/mental retardation X-linked (ATRX), a member of the SWI/SNF-like chromatin remodeling protein family, functions in the maintenance of genomic integrity and the regulation of apoptosis and senescence. However, whether ATRX is directly involved in the radiosensitivity of CRC remains unclear.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Gastrointestinal Surgery, Yantaishan Hospital, Yantai, Shandong Province, China. Electronic address:
Histocompatibility minor 13 (HM13) is a signal sequence stubbed intramembrane cleavage catalytic protein. Increasing evidence supports the association among HM13 expression, tumor-infiltrating immune cells (TIICs), and cancer. However, its role on formation and progression of colorectal cancer (CRC) has not been explored.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.
Supervillin (SVIL), the biggest member of the villin/gelsolin superfamily, has recently been reported to promote the metastasis of hepatocellular carcinoma by stimulating epithelial-mesenchymal transition (EMT). However, little is known about the roles of SVIL in the migration of colorectal cancer cells. Here, we investigated the effects of SVIL on the migration of cisplatin-resistant colorectal cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!