AI Article Synopsis

  • - Nicotine boosts attention and working memory by stimulating nicotinic acetylcholine receptors (nAChRs) in the prefrontal cortex (PFC), a key area for these cognitive functions.
  • - The study finds that nicotine exposure raises the threshold for synaptic spike-timing-dependent potentiation (STDP) in mouse PFC neurons by reducing dendritic calcium signals through enhanced GABAergic transmission.
  • - Blocking nAChRs or GABA(A) receptors reverses nicotine's effects, indicating that nicotine alters information processing in the PFC by increasing the necessary postsynaptic activity for STDP.

Article Abstract

Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2007.03.006DOI Listing

Publication Analysis

Top Keywords

postsynaptic activity
12
prefrontal cortex
8
dendritic calcium
8
calcium signals
8
nicotine
5
pfc
5
distributed network
4
network actions
4
actions nicotine
4
nicotine increase
4

Similar Publications

Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.

View Article and Find Full Text PDF

Downregulation of the NPY-Y1R system in Grpr neurons results in mechanical and chemical hyperknesis in chronic itch.

Neurobiol Dis

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, PR China. Electronic address:

Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord.

View Article and Find Full Text PDF

Fructose-Driven glycolysis supports synaptic function in subterranean rodent - Gansu Zokor (Eospalax cansus).

Neuroscience

January 2025

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:

Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).

View Article and Find Full Text PDF

Synaptic protein expression in bipolar disorder patient-derived neurons implicates PSD-95 as a marker of lithium response.

Neuropharmacology

January 2025

Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA. Electronic address:

Bipolar disorder (BD) is a severe mental illness characterized by recurrent episodes of depression and mania. Lithium is the gold standard pharmacotherapy for BD, but outcomes are variable, and the relevant therapeutic mechanisms underlying successful treatment response remain uncertain. To identify synaptic markers of BD and lithium response, we measured the effects of lithium on induced pluripotent stem cell-derived neurons from BD patients and controls.

View Article and Find Full Text PDF

Reconstitution of synaptic junctions orchestrated by teneurin-latrophilin complexes.

Science

January 2025

Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.

Synapses are organized by trans-synaptic adhesion molecules that coordinate assembly of pre- and postsynaptic specializations, which, in turn, are composed of scaffolding proteins forming liquid-liquid phase-separated condensates. Presynaptic teneurins mediate excitatory synapse organization by binding to postsynaptic latrophilins; however, the mechanism of action of teneurins, driven by extracellular domains evolutionarily derived from bacterial toxins, remains unclear. In this work, we show that only the intracellular sequence, a dimerization sequence, and extracellular bacterial toxin-derived latrophilin-binding domains of Teneurin-3 are required for synapse organization, suggesting that teneurin-induced latrophilin clustering mediates synaptogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!