[reaction: see text] An efficient synthetic route to the ABC tricyclic core of 1alpha-alkyldaphnanes has been developed. The conformational bias imparted by the C6-C9 oxo-bridge of BC-ring system 12 was used to elaborate the ABC-ring system precursor including the introduction of the beta-C5 hydroxyl group. A completely diastereoselective palladium-catalyzed enyne cyclization was then employed to establish the A-ring with a C1 appendage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol0705649DOI Listing

Publication Analysis

Top Keywords

function-oriented synthesis
4
synthesis studies
4
studies aimed
4
aimed synthesis
4
synthesis mode
4
mode action
4
action 1alpha-alkyldaphnane
4
1alpha-alkyldaphnane analogues
4
analogues [reaction
4
[reaction text]
4

Similar Publications

Rare Earth Complex-Based Functional Materials: From Molecular Design and Performance Regulation to Unique Applications.

Acc Chem Res

January 2025

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.

View Article and Find Full Text PDF

Highly Selective Construction of Unique Cyclic [4]Catenanes Induced by Multiple Noncovalent Interactions.

Angew Chem Int Ed Engl

December 2024

College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934, P. R. China.

The synthesis of high-ordered mechanically interlocked supramolecular structures is an extremely challenging topic. Only two linear [4]catenanes have been reported so far and there is no defined strategy to obtain cyclic [4]catenane. Herein, two unprecedented cyclic [4]catenanes, 1 and 2, were prepared in high yields.

View Article and Find Full Text PDF

Dioxygen (O) activation by iron-containing enzymes and biomimetic compounds generates iron-oxygen intermediates, such as iron-superoxo, -peroxo, -hydroperoxo, and -oxo, that mediate oxidative reactions in biological and abiological systems. Among the iron-oxygen intermediates, iron(III)-peroxo species are less frequently implicated as active intermediates in oxidation reactions. In this study, we present the combined experimental and theoretical investigations on -dihydroxylation reactions mediated by synthetic mononuclear nonheme iron-peroxo intermediates, demonstrating the importance of supporting ligands and metal centers in activating the peroxo ligand toward the O-O bond homolysis for the -dihydroxylation reactions.

View Article and Find Full Text PDF

In Situ Ligand-Transformation-Assisted Assembly of a Polyoxometalate and Silver-Phosphine Oxide Cluster for Colorimetric Detection of Phenol Contaminants.

Inorg Chem

September 2024

Hebei Technology Innovation Center for Energy Conversion Materials and Devices, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China.

In situ ligand transformation strategies represent an efficient pathway for constructing function-oriented polyoxometalate (POM)-based crystalline materials. Herein, three POM-based hybrid networks were synthesized through in situ transformation of the phosphine ligand, formulated as [Ag(dppeo)][HPMoO]·5HO (), [Ag(dedpo)][SiWO]·6HO (), and [Ag(dppeo)][PWO]·3HO () (dedpo = (2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide; dppeo = ethane-1,2-diylbis(diphenylphosphine oxide)). During the synthesis of these compounds, the 1,2-diphenylphosphine ethane molecule underwent in situ oxidation, transforming into dppeo and dedpo ligands, respectively.

View Article and Find Full Text PDF

Rongalite/iodine-mediated C(sp)-H bond oximation and thiomethylation reaction of methyl ketones using copper nitrate as the [NO] reagent: synthesis of thiohydroximic acids.

Org Biomol Chem

September 2024

College of Chemistry and Chemical Engineering, Key Laboratory of Function-Oriented Porous Materials of Henan Province, Luoyang Normal University, Luoyang, Henan 471934, P. R. China.

In this work, a highly efficient rongalite/iodine-mediated oxime formation reaction for the preparation of thiohydroximic acids from methyl ketones by employing copper nitrate as the [NO] reagent has been developed. Notably, copper nitrate participated as both a catalyst and the mild oximation reagent in the transformation. This reaction is highly efficient and facile, with a broad substrate scope, especially for fused ring skeleton substrates, heterocyclic skeleton substrates, and acetyl-substituted natural products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!