Atomistic simulations are conducted to examine the dependence of the viscosity of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on temperature and water content. A nonequilibrium molecular dynamics procedure is utilized along with an established fixed charge force field. It is found that the simulations quantitatively capture the temperature dependence of the viscosity as well as the drop in viscosity that occurs with increasing water content. Using mixture viscosity models, we show that the relative drop in viscosity with water content is actually less than that that would be predicted for an ideal system. This finding is at odds with the popular notion that small amounts of water cause an unusually large drop in the viscosity of ionic liquids. The simulations suggest that, due to preferential association of water with anions and the formation of water clusters, the excess molar volume is negative. This means that dissolved water is actually less effective at lowering the viscosity of these mixtures when compared to a solute obeying ideal mixing behavior. The use of a nonequilibrium simulation technique enables diffusive behavior to be observed on the time scale of the simulations, and standard equilibrium molecular dynamics resulted in sub-diffusive behavior even over 2 ns of simulation time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0686893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!