Bacterial communities of four arable soils--pelosol, gley, para brown soil, and podsol brown soil--were analysed by fingerprinting of 16S rRNA gene fragments amplified from total DNA of four replicate samples for each soil type. Fingerprints were generated in parallel by denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and single strand conformation polymorphism (SSCP) to test whether these commonly applied techniques are interchangeable. PCR amplicons could be separated with all three methods resulting in complex ribotype patterns. Although the fragments amplified comprised different variable regions and lengths, DGGE, T-RFLP and SSCP analyses led to similar findings: (a) a clustering of fingerprints which correlated with soil physico-chemical properties, (b) little variability between the four replicates of the same soil, (c) the patterns of the two brown soils were more similar to each other than to those of the other two soils, and (d) the fingerprints of the different soil types revealed significant differences in a permutation test, which was recently developed for this purpose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mimet.2007.02.014 | DOI Listing |
Methods Mol Biol
November 2022
Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
In their natural environments, microorganisms usually live in organized communities. Profiling analysis of microbial communities has recently assumed special relevance as it allows a thorough understanding of the diversity of the microbiota, its behavior over time, and the establishment of patterns associated with health and disease. The application of molecular biology approaches holds the advantage of including culture-difficult and as-yet-uncultivated phylotypes in the profiles, providing a more comprehensive picture of the microbial community.
View Article and Find Full Text PDFSci Total Environ
June 2020
Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Electronic address:
Considering the future energy demand and pollution to the environment, biohydrogen, a biofuel, produced from biological sources have garnered increased attention. The present review emphasis the various techniques and methods employed to enumerate the microbial community and enhancement of hydrogen production by dark fermentation. Notably, molecular techniques such as terminal restriction fragment length polymorphism (T-RFLP), quantitative real-time PCR (q-PCR), fluorescent in-situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), ribosomal intergenic spacer analysis (RISA), and next generation sequencing (NGS) have been extensively discussed on identifying the microbial population in hydrogen production.
View Article and Find Full Text PDFCrit Rev Biotechnol
December 2018
a Department of Biological Engineering, College of Engineering , Konkuk University, Seoul , South Korea.
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2017
The Ohio State University, Wooster, OH, 44691, USA.
Antibiotic residues in soils can lead to serious health risk and ecological hazards. In this study, the effects of penicillin and neomycin, two antibiotics widely used in animal production, were investigated on soil bacterial communities. Changes in the community structure were monitored using three 16S ribosomal DNA (rDNA) polymerase chain reaction-based approaches, including denaturing gradient gel electrophoresis (DGGE), amplified rDNA restriction analysis (ARDRA), and terminal-restriction fragment length polymorphism (T-RFLP) analysis.
View Article and Find Full Text PDFFront Microbiol
May 2017
Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch UniversityStellenbosch, South Africa.
From the time when microbial activity in wine fermentation was first demonstrated, the microbial ecology of the vineyard, grape, and wine has been extensively investigated using culture-based methods. However, the last 2 decades have been characterized by an important change in the approaches used for microbial examination, due to the introduction of DNA-based community fingerprinting methods such as DGGE, SSCP, T-RFLP, and ARISA. These approaches allowed for the exploration of microbial community structures without the need to cultivate, and have been extensively applied to decipher the microbial populations associated with the grapevine as well as the microbial dynamics throughout grape berry ripening and wine fermentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!