As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ast.2006.0108 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos str., 400028 Cluj-Napoca, Romania. Electronic address:
Novel (N-arylamino)phenothiazinium dyes containing meta-substituted-arylamine auxochrome units were successfully obtained by applying a sonochemical protocol designed for a more efficient energy usage in the preparation of methylene blue (MB) analogues. Single crystal X-ray diffraction analysis revealed the spatial arrangement in aggregated crystalline state of (N-(meta-bromoaryl)amino)phenothiazinium dye with minor variances induced by the nature of the halogenide counterion (iodide or chloride). The optical UV-vis properties of the novel (N-arylamino)phenothiazinium dyes were comparable to those of the parent MB, with the longest wavelength absorption maxima situated in the visible range (640-680 nm), large molar extinction coefficients (log ε = 4.
View Article and Find Full Text PDFAntioxidants (Basel)
March 2024
Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Physiol Res
March 2024
Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic. and Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively.
View Article and Find Full Text PDFJ Inorg Biochem
February 2024
College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA. Electronic address:
Neuronal nitric oxide synthase (nNOS) is regulated by phosphorylation in vivo, yet the underlying biochemical mechanisms remain unclear, primarily due to difficulty in obtaining milligram quantities of phosphorylated nNOS protein; detailed spectroscopic and rapid kinetics investigations require purified protein samples at a concentration in the range of hundreds microM. Moreover, the functional diversity of the nNOS isoform is linked to its splice variants. Also of note is that determination of protein phosphorylation stoichiometry remains as a challenge.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
September 2023
Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia. Electronic address:
Hormone-dependent cancers such as breast, uterine, and ovarian cancers account for more than 35% of all cancers in women. Worldwide, these cancers occur in more than 2.7 million women/year and account for 22% of cancer-related deaths/year.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!