This paper reports an improvement in the purification of thioredoxin (Trx) expressed from E. coli by inverse transition cycling (ITC) using cationic elastin-like polypeptides (ELPs). Two ELP libraries having 2% and 5% lysine residues and molecular weights ranging from 4 to 61.1 kDa showed greater salt sensitivity in their inverse transition behavior than purely aliphatic ELPs. Expression yield of Trx-ELP fusions was an unpredictable function of guest residue composition, but reducing the molecular weight of the ELP tag generally increased Trx yield. A cationic 4.3 kDa ELP is the shortest ELP used to purify any protein by ITC to date. A 15.9 kDa ELP with a guest residue composition of K:V:F of 1:7:1 was found to be the optimal cationic tag to purify Trx, as it provided 50% greater Trx yield and only required one-fifth the added NaCl for purification of Trx as compared to previously used aliphatic ELP tags.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562536 | PMC |
http://dx.doi.org/10.1021/bm060849t | DOI Listing |
Int J Biol Macromol
December 2024
Department of Life Sciences, University of Trieste, via Giorgieri, 1, 34127 Trieste, Italy. Electronic address:
Recombinant fusion biotechnology is a powerful tool for producing antimicrobial peptides (AMPs), which can contribute to limiting the number of potentially infectious microorganisms. AMPs are often expressed in fusion with a carrier protein, a strategy that prevents toxic effects on host bacterial cells and protects them from proteolytic degradation. Among the many fusion carriers available, elastin-like polypeptides offer several valuable advantages related to their unique thermo-responsive behavior.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG) elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
Department of Life Sciences, University of Trieste, 34127 Trieste, Italy. abandiera.units.it.
Protein and peptide materials have attracted great interest in recent years, especially for biological applications, in light of their possibility to easily encode bioactivity whilst maintaining cytocompatibility and biodegradability. Heterologous recombinant expression to produce antimicrobial peptides is increasingly considered a convenient alternative for the transition from conventional methods to more sustainable production systems. The human elastin-like polypeptide (HELP) has proven to be a valuable fusion carrier, and due to its cutting-edge properties, biomimetic materials with antimicrobial capacity have been successfully developed.
View Article and Find Full Text PDFAdv Mater
June 2024
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China, 130022.
Engineered protein fibers are promising biomaterials with diverse applications due to their tunable protein structure and outstanding mechanical properties. However, it remains challenging at the molecular level to achieve satisfied mechanical properties and environmental tolerance simultaneously, especially under extreme acid conditions. Herein, the construction of artificial fibers comprising chimeric proteins made of rigid amyloid peptide and flexible cationic elastin-like protein (ELP) module is reported.
View Article and Find Full Text PDFBiomacromolecules
January 2024
Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
A fusion protein composed of a bacterial protein, azurin, having antineoplastic properties and a thermally responsive structural cationic elastin-like protein (ELP), is designed, cloned, expressed, and purified. A simple method of inverse transition cycle (ITC) is employed to purify the fusion protein azurin-ELP diblock copolymer (d-bc). The molecular weight of the azurin-ELP fusion protein is ∼32 kDa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!